《计算机视觉》—— 换脸
- 效果如下:
- 完整代码:
import cv2
import dlib
import numpy as npJAW_POINTS = list(range(0, 17))
RIGHT_BROW_POINTS = list(range(17, 22))
LEFT_BROW_POINTS = list(range(22, 27))
NOSE_POINTS = list(range(27, 35))
RIGHT_EYE_POINTS = list(range(36, 42))
LEFT_EYE_POINTS = list(range(42, 48))
MOUTH_POINTS = list(range(48, 61))
FACE_POINTS = list(range(17, 68))# 关键点集
POINTS = [LEFT_BROW_POINTS + RIGHT_EYE_POINTS +LEFT_EYE_POINTS + RIGHT_BROW_POINTS + NOSE_POINTS + MOUTH_POINTS]# 处理为元组,后续使用方便
POINTStuple = tuple(POINTS)def getFaceMask(im, keyPoints): # 根据关键点获取脸部掩膜im = np.zeros(im.shape[:2], dtype=np.float64)for p in POINTS:points = cv2.convexHull(keyPoints[p]) # 获取凸包cv2.fillConvexPoly(im, points, color=1) # 填充凸包,数字在0~1之间# 单通道im构成3通道im(3,行,列),改变形状(行、列、3)适应0penCVim = np.array([im, im, im]).transpose((1, 2, 0))im = cv2.GaussianBlur(im, (25, 25), 0) # 需要根据具体调整return im""" 求出b脸仿射变换到a脸的变换矩阵M,此处用到的算法难以理解,大家可直接跳过 """def getM(points1, points2):points1 = points1.astype(np.float64) # int8转换为浮点数类型points2 = points2.astype(np.float64) # 转换为浮点数类型c1 = np.mean(points1, axis=0) # 归一化:(数值-均值)/标准差c2 = np.mean(points2, axis=0) # 归一化:(数值-均值)/标准差,均值不同,主要是脸五官位置大小不同points1 -= c1 # 减去均值points2 -= c2 # 减去均值s1 = np.std(points1) # 方差计算标准差s2 = np.std(points2) # 方差计算标准差points1 /= s1 # 除标准差,计算出归一化的结果points2 /= s2 # 除标准差,计算出归一化的结果# 奇异值分解,Singular Value DecompositionU, S, Vt = np.linalg.svd(points1.T * points2)R = (U * Vt).T # 通过U和Vt找到Rreturn np.hstack(((s2 / s1) * R, c2.T - (s2 / s1) * R * c1.T))def getKeyPoints(im): # 获取关键点rects = detector(im, 1) # 获取人脸方框位置shape = predictor(im, rects[0]) # 获取关键点s = np.matrix([[p.x, p.y] for p in shape.parts()])return s""" 修改b图的颜色值,与a图相同 """
def normalColor(a, b):ksize = (111, 111) #非常大的核,去噪等运算时为11就比较大了aGauss = cv2.GaussianBlur(a, ksize, 0) # 对a进行高斯滤波bGauss = cv2.GaussianBlur(b, ksize, 0) # 对b进行高斯滤波weight = aGauss / bGauss # 计算目标图像调整颜色的权重值,存在0除警告,可忽略。where_are_inf = np.isinf(weight)weight[where_are_inf] = 0return b * weighta = cv2.imread("dlrb_3.jpg") # 换脸A图片
b = cv2.imread("zly.jpg") # 换脸B图片detector = dlib.get_frontal_face_detector() # 构造脸部位置检测器
predictor = dlib.shape_predictor("shape_predictor_68_face_landmarks.dat") # 获取人脸关键点定位模型aKeyPoints = getKeyPoints(a) # 获取A图片的68关键点
bKeyPoints = getKeyPoints(b) # 获取B图片的68关键点bOriginal = b.copy() # 不对原来的图片b进行破坏和修改aMask = getFaceMask(a, aKeyPoints) # 获取图片A的人脸掩膜
cv2.imshow('aMask', aMask)
cv2.waitKey()bMask = getFaceMask(b, bKeyPoints) # 获取图片B的人脸掩膜
cv2.imshow('bMask', bMask)
cv2.waitKey()"""求出b脸仿射变换到a脸的变换矩阵M"""
M = getM(aKeyPoints[POINTStuple], bKeyPoints[POINTStuple])"""将b的脸部(bmask)根据M仿射变换到a上"""
dsize = a.shape[:2][::-1]
# 目标输出与图像a大小一致
# 需要注意,shape是(行、列),warpAffine参数dsize是(列、行)
# 使用a.shape[:2][::-1],获取a的(列、行)# 函数warpAffine(src,M,dsize,dst=None, flags=None, borderMode=None, borderValue=None)
# src:输入图像
# M:运算矩阵,2行3列的,
# dsize:运算后矩阵的大小,也就是输出图片的尺寸
# dst:输出图像
# flags:插值方法的组合,与resize函数中的插值一样,可以查看cv2.resize
# borderMode:边界模式,BORDER_TRANSPARENT表示边界透明
# borderValue:在恒定边框的情况下使用的borderValue值;默认情况下,它是 0
bMaskWarp = cv2.warpAffine(bMask, M, dsize, borderMode=cv2.BORDER_TRANSPARENT, flags=cv2.WARP_INVERSE_MAP)
cv2.imshow("bMaskWarp", bMaskWarp)
cv2.waitKey()"""获取脸部最大值(两个脸模板香加)"""
mask = np.max([aMask, bMaskWarp], axis=0)
cv2.imshow("mask", mask)
cv2.waitKey()""" 使用仿射矩阵M,将b映射到a """
bWrap = cv2.warpAffine(b, M, dsize, borderMode=cv2.BORDER_TRANSPARENT, flags=cv2.WARP_INVERSE_MAP)
cv2.imshow("bWrap", bWrap)
cv2.waitKey()""" 求b图片的仿射到图片a的颜色值,b的颜色值改为a的颜色 """
bcolor = normalColor(a, bWrap)
cv2.imshow("bcolor", bcolor)
cv2.waitKey()""" ===========step8:换脸(mask区域用bcolor,非mask区城用a)============= """
out = a * (1.0 - mask) + bcolor * mask# =========输出原始人脸、换脸结果===============
cv2.imshow("a", a)
cv2.imshow("b", bOriginal)
cv2.imshow("out", out/255)
cv2.waitKey()
cv2.destroyAllWindows()
相关文章:

《计算机视觉》—— 换脸
效果如下: 完整代码: import cv2 import dlib import numpy as npJAW_POINTS list(range(0, 17)) RIGHT_BROW_POINTS list(range(17, 22)) LEFT_BROW_POINTS list(range(22, 27)) NOSE_POINTS list(range(27, 35)) RIGHT_EYE_POINTS list(range(36…...

【JavaEE初阶】深入透析文件-IO关于文件内容的操作(四种文件流)
前言 🌟🌟本期讲解关于CAS的补充和JUC中有用的类,这里涉及到高频面试题哦~~~ 🌈上期博客在这里:【JavaEE初阶】文件-IO之实现文件系统的操作如何进行实现-CSDN博客 🌈感兴趣的小伙伴看一看小编主页&…...
复习:react 中的 refs,怎么使用,有哪些使用场景
在 React 中,refs(引用)是一个重要的特性,它允许开发者直接访问 DOM 元素或者 React 组件的实例。以下是对 React 中 refs 的使用及其使用场景的详细解释: 一、refs 的使用方法 字符串引用 在早期的 React 版本中,可以通过字符串来设置 ref。然而,这种方法已经被废弃,…...

Python OpenCV精讲系列 - 目标检测与识别深入理解(二十)
💖💖⚡️⚡️专栏:Python OpenCV精讲⚡️⚡️💖💖 本专栏聚焦于Python结合OpenCV库进行计算机视觉开发的专业教程。通过系统化的课程设计,从基础概念入手,逐步深入到图像处理、特征检测、物体识…...
golang中的上下文
背景 在Go语言中,使用context包来管理跨API和进程间的请求生命周期是常见的做法。特别是在涉及到并发编程时,如启动协程(goroutine)来处理异步任务,正确地传递和监听context变得尤为重要。比如,在gin框架中…...

Navigation2 算法流程
转自 https://zhuanlan.zhihu.com/p/405670882 此文仅作学习笔记 启动流程 在仿真环境中启动导航包的示例程序,执行nav2_bringup/bringup/launch/tb3_simulation_launch.py文件。ROS2的launch文件支持采用python语言来编写以支持更加复杂的功能,本文件…...
OpenAI swarm+ Ollama快速构建本地多智能体服务 - 1. 服务构建教程
OpenAI开源了多智能体编排的工程swarm,今天介绍一下swarm与OLLAMA如何结合使用的教程,在本地构建自己的多智能体服务,并给大家实践演示几个案例。 安装步骤 安装ollama,在官网下载对应操作系统的版本即可,下载后用ol…...
HTB:Wifinetic[WriteUP]
目录 连接至HTB并启动靶机 1.What is the name of the OpenWRT backup file accessible over FTP? 使用nmap对靶机21、22端口进行脚本、服务信息扫描 2.Whats the WiFi password for SSID OpenWRT? 3.Which user reused the WiFi password on thier local account? 4.…...

专业学习|马尔可夫链(概念、变体以及例题)
一、马尔可夫链的概念及组成 (一)学习资料分享 来源:024-一张图,但讲懂马尔可夫决策过程_哔哩哔哩_bilibili 马尔可夫链提供了一种建模随机过程的方法,具有广泛的应用。在实际问题中,通过转移概率矩阵及初…...
RK3576 安卓SDK编译环境搭建
编译 Android14 对机器的配置要求较高: 建议预留500G存储 多分配CPU和内存 建议使用 Ubuntu 20.04 操作系统或更高版本 sudo apt-get updatesudo apt-get install make gcc sudo apt-get install g++ patchelf gawk texinfo chrpath diffstat binfmt-support sudo apt-get …...

Renesas R7FA8D1BH (Cortex®-M85) 上光电编码器测速功能
目录 概述 1 软硬件 1.1 软硬件环境信息 1.2 开发板信息 1.3 调试器信息 2 硬件架构 2.1 硬件框架结构 2.2 测速功能原理介绍 2.2.1 理论描述 2.2.2 实现原理 2.2.3 系统硬件结构 3 软件实现 3.1 FSP配置项目 3.2 代码实现 3.2.1 初始化函数 3.2.2 功能函数 3.…...

软件测试学习笔记丨Linux三剑客-sed
本文转自测试人社区,原文链接:https://ceshiren.com/t/topic/32521 一、简介 sed(Stream editor)是一个功能强大的文本流编辑器,主要用于对文本进行处理和转换。它适用于自动化处理大量的文本数据,能够支持…...

Vue脚手架学习 vue脚手架配置代理、插槽、Vuex使用、路由、ElementUi插件库的使用
目录 1.vue脚手架配置代理 1.1 方法一 1.2 方法二 2.插槽 2.1 默认插槽 2.2 具名插槽 2.3 作用域插槽 3.Vuex 3.1 概念 3.2 何时使用? 3.3 搭建vuex环境 3.4 基本使用 3.5 getters的使用 3.6 四个map方法的使用 3.6.1 mapState方法 3.6.2 mapGetter…...
使用yml文件安装环境时,如何添加conda和pip的镜像源
博客参考 添加conda镜像源 name: NAME channels:- conda-forge- pytorch- https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/main- https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/r- https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/msys2- defaults depende…...

c语言经典100例
1.字符串转为数字 #include <stdio.h>int strToInt(char *s) {int num0;int sign1;int step1;if (*s -){sign -1;s;}while (*s > 0&&*s < 9){num num*10(*s-0);step 10;s;}return num*sign; }int main() {char a[10] "-1234";char *s a ;pr…...

百易云资产管理运营系统 ufile.api.php SQL注入漏洞复现
0x01 产品描述: 百易云资产管理运营系统,是专门针对企业不动产资产管理和运营需求而设计的一套综合解决方案。该系统能够覆盖资产的全生命周期管理,包括资产的登记、盘点、评估、处置等多个环节,同时提供强大的运营分析功能&#…...
【分布式微服务云原生】《Redis RedLock 算法全解析:应对时钟漂移与网络分区挑战》
《Redis RedLock 算法全解析:应对时钟漂移与网络分区挑战》 摘要: 本文深入探讨 Redis 的 RedLock 算法,详细阐述其步骤及工作原理,同时重点分析该算法如何处理时钟漂移和网络分区这两个常见的分布式系统问题。读者将通过本文深入…...

OceanBase 的写盘与传统数据库有什么不同?
背景 在数据库开发过程中,“写盘”是一项核心操作,即将内存中暂存的数据安全地转储到磁盘上。在诸如MySQL这样的传统数据库管理系统中,写盘主要有以下几步:首先将数据写入缓存池;其次,为了确保数据的完整性…...

用Java爬虫API,轻松获取taobao商品SKU信息
在电子商务的世界里,SKU(Stock Keeping Unit,库存单位)是商品管理的基础。对于商家来说,SKU的详细信息对于库存管理、价格策略制定、市场分析等都有着重要作用。taobao作为中国最大的电子商务平台之一,提供…...

OpenHarmony 入门——ArkUI 自定义组件内同步的装饰器@State小结(二)
文章大纲 引言一、组件内状态装饰器State1、初始化2、使用规则3、变量的传递/访问规则说明4、支持的观察变化的场景5、State 变量的值初始化和更新机制6、State支持联合类型实例 引言 前一篇文章OpenHarmony 入门——ArkUI 自定义组件之间的状态装饰器小结(一&…...
【杂谈】-递归进化:人工智能的自我改进与监管挑战
递归进化:人工智能的自我改进与监管挑战 文章目录 递归进化:人工智能的自我改进与监管挑战1、自我改进型人工智能的崛起2、人工智能如何挑战人类监管?3、确保人工智能受控的策略4、人类在人工智能发展中的角色5、平衡自主性与控制力6、总结与…...

8k长序列建模,蛋白质语言模型Prot42仅利用目标蛋白序列即可生成高亲和力结合剂
蛋白质结合剂(如抗体、抑制肽)在疾病诊断、成像分析及靶向药物递送等关键场景中发挥着不可替代的作用。传统上,高特异性蛋白质结合剂的开发高度依赖噬菌体展示、定向进化等实验技术,但这类方法普遍面临资源消耗巨大、研发周期冗长…...

【HarmonyOS 5.0】DevEco Testing:鸿蒙应用质量保障的终极武器
——全方位测试解决方案与代码实战 一、工具定位与核心能力 DevEco Testing是HarmonyOS官方推出的一体化测试平台,覆盖应用全生命周期测试需求,主要提供五大核心能力: 测试类型检测目标关键指标功能体验基…...

如何在看板中有效管理突发紧急任务
在看板中有效管理突发紧急任务需要:设立专门的紧急任务通道、重新调整任务优先级、保持适度的WIP(Work-in-Progress)弹性、优化任务处理流程、提高团队应对突发情况的敏捷性。其中,设立专门的紧急任务通道尤为重要,这能…...
python如何将word的doc另存为docx
将 DOCX 文件另存为 DOCX 格式(Python 实现) 在 Python 中,你可以使用 python-docx 库来操作 Word 文档。不过需要注意的是,.doc 是旧的 Word 格式,而 .docx 是新的基于 XML 的格式。python-docx 只能处理 .docx 格式…...

现代密码学 | 椭圆曲线密码学—附py代码
Elliptic Curve Cryptography 椭圆曲线密码学(ECC)是一种基于有限域上椭圆曲线数学特性的公钥加密技术。其核心原理涉及椭圆曲线的代数性质、离散对数问题以及有限域上的运算。 椭圆曲线密码学是多种数字签名算法的基础,例如椭圆曲线数字签…...
MySQL中【正则表达式】用法
MySQL 中正则表达式通过 REGEXP 或 RLIKE 操作符实现(两者等价),用于在 WHERE 子句中进行复杂的字符串模式匹配。以下是核心用法和示例: 一、基础语法 SELECT column_name FROM table_name WHERE column_name REGEXP pattern; …...
什么?连接服务器也能可视化显示界面?:基于X11 Forwarding + CentOS + MobaXterm实战指南
文章目录 什么是X11?环境准备实战步骤1️⃣ 服务器端配置(CentOS)2️⃣ 客户端配置(MobaXterm)3️⃣ 验证X11 Forwarding4️⃣ 运行自定义GUI程序(Python示例)5️⃣ 成功效果相比,优缺点是什么?适用于哪些场景?
Redis 的发布订阅(Pub/Sub)模式与专业的 MQ(Message Queue)如 Kafka、RabbitMQ 进行比较,核心的权衡点在于:简单与速度 vs. 可靠与功能。 下面我们详细展开对比。 Redis Pub/Sub 的核心特点 它是一个发后…...

九天毕昇深度学习平台 | 如何安装库?
pip install 库名 -i https://pypi.tuna.tsinghua.edu.cn/simple --user 举个例子: 报错 ModuleNotFoundError: No module named torch 那么我需要安装 torch pip install torch -i https://pypi.tuna.tsinghua.edu.cn/simple --user pip install 库名&#x…...