「图::连通」详解并查集并实现对应的功能 / 手撕数据结构(C++)
目录
概述
成员变量
创建销毁
根节点访问
路径压缩
启发式合并
复杂度
Code
概述
并查集,故名思议,能合并、能查询的集合,在图的连通性问题和许多算法优化上着广泛的使用。
这是一个什么数据结构呢?
一般来讲,并查集是由一系列集合组成的集合群。
其中,每个集合都有一个根节点,它的父亲仍是它自己,集合内其余的节点的父亲or祖宗均是这个节点,这样,一个根节点就领导了一个集合。而并查集支持这样的多个集合的访问以及合并操作。

每个集合都是一个树形结构,你可以认为并查集是一片森林。
听起来挺复杂度,但是其实很好实现。
成员变量
static constexpr int N = 1e5 + 5;一个无关紧要的常量,限制最大值。
int pre[N];父节点指针数组,pre[i]=j表示i的父亲是j,即二者处于同一集合。
int size[N];集合大小数组,只用每个集合的根节点上的size是有意义的,若i为根节点size[i]=x表示i所在的集合大小为x。
struct union_find_set {static constexpr int N = 1e5 + 5;int pre[N],size[N];...
};
创建销毁
在一开始,每个节点都单独成为一个集合,每个集合大小为1。
union_find_set(int n = N) {for (int i = 0; i < n; i++) {pre[i] = i;size[i] = 1;}
}
根节点访问
给定一个节点x,我们想访问他的根节点。
这一步可以递归实现:我们知道只有根节点的pre指向自己,所以如果pre[x]==x,我们就找到了根节点,否则沿着pre指针爬,传入下一级root。
int root(int x) {return pre[x] == x ? x : root(pre[x]);
}
路径压缩
沿着pre指针爬树的过程的时间复杂度是线性级别的,但是我们可以使用路径压缩:
当我们依次跳出递归时,额外将这一级x的pre指针更新为找到的根节点,这样,一棵树就由多层被压缩成了两层(根节点与叶子节点)。
int root(int x) {return pre[x] = (pre[x] == x ? x : root(pre[x]));
}
启发式合并
想合并两个集合,我们可以采用启发式合并,即按规模合并。
路径压缩并不是实时的,所以一般一个集合仍是多层的。在这种情况下,为了保持查询根节点的高效性,我们应该将小集合接在大集合之下(小集合中节点少,向上访问的总代价小,如果反过来,那么大集合中的大量节点想向上访问会极其不利)。
给出两个节点,将其所在的集合合并,我们先找出root,如果两个节点确实属于不同集合,我们将小集合接在大集合之下,这样就能保持根节点查询的效率。最后根节点的size。
void unite(int x, int y) {x = root(x), y = root(y);if (x == y)return;if (size[y] < size[x])std::swap(x, y);pre[x] = y;size[y] += size[x];
}
复杂度
时间复杂度:O(n) 使用路径压缩:O(1)~O(logn)
空间复杂度:O(n)
Code
#include <algorithm>
#ifndef UNION_FIND_SET
#define UNION_FIND_SET
struct union_find_set {static constexpr int N = 1e5 + 5;int pre[N],size[N];union_find_set(int n) {for (int i = 0; i < n; i++) {pre[i] = i;size[i] = 1;}}int root(int x) {return pre[x] = (pre[x] == x ? x : root(pre[x]));}int get_size(int x) {return size[root(x)];}void unite(int x, int y) {x = root(x), y = root(y);if (x == y)return;if (size[y] < size[x])std::swap(x, y);pre[x] = y;size[y] += size[x];}
};
#endif相关文章:
「图::连通」详解并查集并实现对应的功能 / 手撕数据结构(C++)
目录 概述 成员变量 创建销毁 根节点访问 路径压缩 启发式合并 复杂度 Code 概述 并查集,故名思议,能合并、能查询的集合,在图的连通性问题和许多算法优化上着广泛的使用。 这是一个什么数据结构呢? 一般来讲,并查集是…...
基于PSO粒子群优化的CNN-GRU-SAM网络时间序列回归预测算法matlab仿真
目录 1.算法运行效果图预览 2.算法运行软件版本 3.部分核心程序 4.算法理论概述 5.算法完整程序工程 1.算法运行效果图预览 (完整程序运行后无水印) PSO优化过程: PSO优化前后,模型训练对比: 数据预测对比: 误差回归对比&a…...
PyTorch 的 DataLoader 类介绍
DataLoader 类 功能与作用 PyTorch 是一个流行的开源机器学习库,它提供了一个名为 DataLoader 的类,用于加载数据集并将其封装成一个可迭代的对象。DataLoader 可以自动地将数据集划分为多个批次,并在训练过程中迭代地返回这些批次。是用于加…...
【设计模式系列】命令模式
目录 一、什么是命令模式 二、命令模式的角色 三、命令模式的典型应用场景 四、命令模式在Runnable中的应用 一、什么是命令模式 命令模式(Command Pattern)是一种行为设计模式,它将一个请求或简单操作封装为一个对象。这个模式提供了一种…...
uniapp中使用lottie实现JSON动画
uniapp中使用lottie实现JSON动画 不喜欢废话直接开干一、引入相关依赖二、在项目的目录新建目录结构三、操作步骤四、编写自定义组件代码五、组件的使用提一嘴更多lottie-web常用方法添加点击事件 不喜欢废话直接开干 一、引入相关依赖 npm install lottie-web # 如果有问题可…...
AcWing275
题目重述 这道题的核心是利用方格取数模型的思想,将两条路径的传递过程映射为同时出发的两条路径,避免重复格子的经过。题解通过以下步骤解题: 路径映射:从 (n, m) 回到 (1, 1) 的路径,可以转换成 (1, 1) 到 (n, m) …...
Windows系统部署redis自启动服务【亲测可用】
文章目录 引言I redis以本地服务运行(Windows service)使用MSI安装包配置文件,配置端口和密码II redis服务以终端命令启动缺点运行redis-server并指定端口和密码III 知识扩展确认redis-server可用性Installing the Service引言 服务器是Windows系统,所以使用Windows不是re…...
深入了解机器学习 (Descending into ML):线性回归
人们早就知晓,相比凉爽的天气,蟋蟀在较为炎热的天气里鸣叫更为频繁。数十年来,专业和业余昆虫学者已将每分钟的鸣叫声和温度方面的数据编入目录。Ruth 阿姨将她喜爱的蟋蟀数据库作为生日礼物送给您,并邀请您自己利用该数据库训练一…...
每日OJ题_牛客_集合_排序_C++_Java
目录 牛客_集合_排序 题目解析 C代码 Java代码 牛客_集合_排序 集合_牛客题霸_牛客网 (nowcoder.com) 题目解析 笔试题可直接用set排序,面试可询问是否要手写排序函数,如果要手写排序,推荐写快排。 C代码 #include <iostream> …...
鸿蒙网络编程系列27-HTTPS服务端证书的四种校验方式示例
1. 服务端数字证书验证的问题 在鸿蒙客户端对服务端发起HTTPS请求时,如果使用HttpRequest的request发起请求,那么就存在服务端数字证书的验证问题,你只有两个选择,一个是使用系统的CA,一个是使用自己选定的CA…...
scala继承
Scala中继承的定义为在原有类的基础上定义一个新类,原有类称为父类,新类称为子类。 当子类从父类中继承的方法不能满足需要时,子类需要有自己的行为,怎么办? 此时使用override可以重写父类方法。 class Aniaml(){va…...
【Hive】2-Apache Hive概述、架构、组件、数据模型
Apache Hive概述 什么是Hive Apache Hive是一款建立在Hladoop之上的开源数据仓库系统,可以将存储在Hadoop文件中的结构化、半结构化数据文件映射为一张数据库表,基于表提供了一种类似SQL的查询模型,称为Hive查询语言(HQL),用于访…...
关于目前面试八股文的一些心得体会
现在是2024年10月,自22年开始,明显感觉到整个计算机行业,越来越卷了。一方面,随着信息的传播,越来越多的新人涌入了这个赛道,另一方面,众所周知的原因,不管大厂还是小厂在经历寒冬之…...
大数据-178 Elasticsearch Query - Java API 索引操作 文档操作
点一下关注吧!!!非常感谢!!持续更新!!! 目前已经更新到了: Hadoop(已更完)HDFS(已更完)MapReduce(已更完&am…...
PHP(一)从入门到放弃
参考文献:https://www.php.net/manual/zh/introduction.php PHP 是什么? PHP(“PHP: Hypertext Preprocessor”,超文本预处理器的字母缩写)是一种被广泛应用的开放源代码的多用途脚本语言,它可嵌入到 HTML…...
基于深度学习的生物启发的学习系统
基于深度学习的生物启发学习系统(Biologically Inspired Learning Systems)旨在借鉴生物大脑的结构和学习机制,设计出更高效、更灵活的人工智能系统。这类系统融合了生物神经科学的研究成果,通过模仿大脑中的学习模式、记忆过程和…...
10_实现readonly
在某些时候,我们希望定义一些数据是只读的,不允许被修改,从而实现对数据的保护,即为 readonly 只读本质上也是对数据对象的代理,我们同样可以基于之前实现的 createReactiveObject 函数来实现,可以为此函数…...
简单介绍$listeners
$listeners 它可以获取父组件传递过来的所有自定义函数,如下: // 父组件 <template><div class"a"><Child abab"handleAbab" acac"handleAcac"/></div> </template><script> impor…...
架构设计笔记-20-补充知识
知识产权 我国没有专门针对知识产权制定统一的法律(知识产权法),而是在民法通则规定的原则下,根据知识产权的不同类型制定了不同的单项法律及法规,如著作权法、商标法、专利法、计算机软件保护条例等,这些法律、法规共同构成了我…...
scrapy 爬虫学习之【中医药材】爬虫
本项目纯学习使用。 1 scrapy 代码 爬取逻辑非常简单,根据url来处理翻页,然后获取到详情页面的链接,再去爬取详情页面的内容即可,最终数据落地到excel中。 经测试,总计获取 11299条中医药材数据。 import pandas as…...
关于nvm与node.js
1 安装nvm 安装过程中手动修改 nvm的安装路径, 以及修改 通过nvm安装node后正在使用的node的存放目录【这句话可能难以理解,但接着往下看你就了然了】 2 修改nvm中settings.txt文件配置 nvm安装成功后,通常在该文件中会出现以下配置&…...
微信小程序云开发平台MySQL的连接方式
注:微信小程序云开发平台指的是腾讯云开发 先给结论:微信小程序云开发平台的MySQL,无法通过获取数据库连接信息的方式进行连接,连接只能通过云开发的SDK连接,具体要参考官方文档: 为什么? 因为…...
pikachu靶场通关笔记22-1 SQL注入05-1-insert注入(报错法)
目录 一、SQL注入 二、insert注入 三、报错型注入 四、updatexml函数 五、源码审计 六、insert渗透实战 1、渗透准备 2、获取数据库名database 3、获取表名table 4、获取列名column 5、获取字段 本系列为通过《pikachu靶场通关笔记》的SQL注入关卡(共10关࿰…...
C++.OpenGL (20/64)混合(Blending)
混合(Blending) 透明效果核心原理 #mermaid-svg-SWG0UzVfJms7Sm3e {font-family:"trebuchet ms",verdana,arial,sans-serif;font-size:16px;fill:#333;}#mermaid-svg-SWG0UzVfJms7Sm3e .error-icon{fill:#552222;}#mermaid-svg-SWG0UzVfJms7Sm3e .error-text{fill…...
比较数据迁移后MySQL数据库和OceanBase数据仓库中的表
设计一个MySQL数据库和OceanBase数据仓库的表数据比较的详细程序流程,两张表是相同的结构,都有整型主键id字段,需要每次从数据库分批取得2000条数据,用于比较,比较操作的同时可以再取2000条数据,等上一次比较完成之后,开始比较,直到比较完所有的数据。比较操作需要比较…...
如何应对敏捷转型中的团队阻力
应对敏捷转型中的团队阻力需要明确沟通敏捷转型目的、提升团队参与感、提供充分的培训与支持、逐步推进敏捷实践、建立清晰的奖励和反馈机制。其中,明确沟通敏捷转型目的尤为关键,团队成员只有清晰理解转型背后的原因和利益,才能降低对变化的…...
【Elasticsearch】Elasticsearch 在大数据生态圈的地位 实践经验
Elasticsearch 在大数据生态圈的地位 & 实践经验 1.Elasticsearch 的优势1.1 Elasticsearch 解决的核心问题1.1.1 传统方案的短板1.1.2 Elasticsearch 的解决方案 1.2 与大数据组件的对比优势1.3 关键优势技术支撑1.4 Elasticsearch 的竞品1.4.1 全文搜索领域1.4.2 日志分析…...
协议转换利器,profinet转ethercat网关的两大派系,各有千秋
随着工业以太网的发展,其高效、便捷、协议开放、易于冗余等诸多优点,被越来越多的工业现场所采用。西门子SIMATIC S7-1200/1500系列PLC集成有Profinet接口,具有实时性、开放性,使用TCP/IP和IT标准,符合基于工业以太网的…...
论文阅读:Matting by Generation
今天介绍一篇关于 matting 抠图的文章,抠图也算是计算机视觉里面非常经典的一个任务了。从早期的经典算法到如今的深度学习算法,已经有很多的工作和这个任务相关。这两年 diffusion 模型很火,大家又开始用 diffusion 模型做各种 CV 任务了&am…...
算术操作符与类型转换:从基础到精通
目录 前言:从基础到实践——探索运算符与类型转换的奥秘 算术操作符超级详解 算术操作符:、-、*、/、% 赋值操作符:和复合赋值 单⽬操作符:、--、、- 前言:从基础到实践——探索运算符与类型转换的奥秘 在先前的文…...
