【笔记】【YOLOv10图像识别】自动识别图片、视频、摄像头、电脑桌面中的花朵学习踩坑
(一)启动
创建环境python3.9
打开此环境终端
(后面的语句操作几乎都在这个终端执行)
输入up主提供的语句:pip install -r requirements.txt
1.下载pytorch网络连接超时
pytorch网址:
Start Locally | PyTorch
把pip后面的3去掉
在上面的网址中找到对应的版本用那个下载语句 但是我开着魔法都下载失败了说是
网络连接超时问题
于是使用清华的镜像再次下载pytorch 飞速成功
pip install torch torchvision torchaudio -f https://pypi.tuna.tsinghua.edu.cn/simple
2.NVIDIA缺失
安装 cuda12.4
配置环境变量:
C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v12.4\bin添加到环境变量的PATH中
完成这步之后
输入nvida-smi后出现问题 大概就是我的C:\Program Files\NVIDIA Corporation这个路径下面没有NVSMI的文件夹
查询后解决: 感谢Windows NVIDIA Corporation下没有NVSMI文件夹解决方法-CSDN博客
链接:百度网盘 请输入提取码
提取码:wy6l
将NVSMI.zip解压后 放到C:\Program Files\NVIDIA Corporation\
然后再次回到你环境终端 输入nvdia-smi 发现这个电脑没有显卡
无所谓 让我们继续下一步
3.python app.py报错缺乏gradio
Traceback (most recent call last): File "D:\ai训练\yolov10\yolov10\app.py", line 1, in <module> import gradio as gr ModuleNotFoundError: No module named 'gradio'
那下载一个就是
再次 输入语句运行发现报错:
Exception in ASGI application Traceback (most recent call last): File "C:\ProgramData\anaconda3\envs\yolov10\lib\site-packages\pydantic\type_adapter.py", line 270, in _init_core_attrs self._core_schema = _getattr_no_parents(self._type, '__pydantic_core_schema__') File "C:\ProgramData\anaconda3\envs\yolov10\lib\site-packages\pydantic\type_adapter.py", line 112, in _getattr_no_parents raise AttributeError(attribute) AttributeError: __pydantic_core_schema_
ok啊依赖冲突了 降低版本
pip install pydantic==1.10.9
解决 这里的问题就ok了
4.运行了之后发现网页内容不是教程给的文件夹的内容
在yolov10中找到app.py
打开并且来到最后一行
app.launch(server_port=7861)
更改端口号为7861
原因:此前按照教程用默认端口7860自己先跑了一遍官方的
5.第4的解决并不稳定
解决:
在yolov10和bin目录同级新建一个models
把文件夹中的所有.pt文件都放进去
然后打开app.py
import gradio as gr
import cv2
import tempfile
from ultralytics import YOLOv10
import os
# Set no_proxy environment variable for localhost
os.environ["no_proxy"] = "localhost,127.0.0.1,::1"
# Directory where your models are store
MODEL_DIR = 'D:/ai_train/yolov10/yolov10/models/'
# Load all available models from the directory
def get_model_list():
return [f for f in os.listdir(MODEL_DIR) if f.endswith('.pt')]
def yolov10_inference(image, video, model_id, image_size, conf_threshold):
model_path = os.path.join(MODEL_DIR, model_id) # Get the full model path
model = YOLOv10(model_path) # Load the selected model
if image:
results = model.predict(source=image, imgsz=image_size, conf=conf_threshold)
annotated_image = results[0].plot()
return annotated_image[:, :, ::-1], None
else:
video_path = tempfile.mktemp(suffix=".webm")
with open(video_path, "wb") as f:
with open(video, "rb") as g:
f.write(g.read())
cap = cv2.VideoCapture(video_path)
fps = cap.get(cv2.CAP_PROP_FPS)
frame_width = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH))
frame_height = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
output_video_path = tempfile.mktemp(suffix=".webm")
out = cv2.VideoWriter(output_video_path, cv2.VideoWriter_fourcc(*'vp80'), fps, (frame_width, frame_height))
while cap.isOpened():
ret, frame = cap.read()
if not ret:
break
results = model.predict(source=frame, imgsz=image_size, conf=conf_threshold)
annotated_frame = results[0].plot()
out.write(annotated_frame)
cap.release()
out.release()
return None, output_video_path
def yolov10_inference_for_examples(image, model_path, image_size, conf_threshold):
annotated_image, _ = yolov10_inference(image, None, model_path, image_size, conf_threshold)
return annotated_image
def app():
with gr.Blocks():
with gr.Row():
with gr.Column():
image = gr.Image(type="pil", label="Image", visible=True)
video = gr.Video(label="Video", visible=False)
input_type = gr.Radio(
choices=["Image", "Video"],
value="Image",
label="Input Type",
)
# Dynamically load models from the directory
model_id = gr.Dropdown(
label="Model",
choices=get_model_list(), # Dynamically fetch the model list
value=get_model_list()[0], # Set a default model
)
image_size = gr.Slider(
label="Image Size",
minimum=320,
maximum=1280,
step=32,
value=640,
)
conf_threshold = gr.Slider(
label="Confidence Threshold",
minimum=0.0,
maximum=1.0,
step=0.05,
value=0.25,
)
yolov10_infer = gr.Button(value="Detect Objects")
with gr.Column():
output_image = gr.Image(type="numpy", label="Annotated Image", visible=True)
output_video = gr.Video(label="Annotated Video", visible=False)
def update_visibility(input_type):
image = gr.update(visible=True) if input_type == "Image" else gr.update(visible=False)
video = gr.update(visible=False) if input_type == "Image" else gr.update(visible=True)
output_image = gr.update(visible=True) if input_type == "Image" else gr.update(visible(False))
output_video = gr.update(visible=False) if input_type == "Image" else gr.update(visible=True)
return image, video, output_image, output_video
input_type.change(
fn=update_visibility,
inputs=[input_type],
outputs=[image, video, output_image, output_video],
)
def run_inference(image, video, model_id, image_size, conf_threshold, input_type):
if input_type == "Image":
return yolov10_inference(image, None, model_id, image_size, conf_threshold)
else:
return yolov10_inference(None, video, model_id, image_size, conf_threshold)
yolov10_infer.click(
fn=run_inference,
inputs=[image, video, model_id, image_size, conf_threshold, input_type],
outputs=[output_image, output_video],
)
gr.Examples(
examples=[
[
"ultralytics/assets/bus.jpg",
get_model_list()[0],
640,
0.25,
],
[
"ultralytics/assets/zidane.jpg",
get_model_list()[0],
640,
0.25,
],
],
fn=yolov10_inference_for_examples,
inputs=[
image,
model_id,
image_size,
conf_threshold,
],
outputs=[output_image],
cache_examples='lazy',
)
gradio_app = gr.Blocks()
with gradio_app:
gr.HTML(
"""
<h1 style='text-align: center'>
YOLOv10: Real-Time End-to-End Object Detection
</h1>
""")
gr.HTML(
"""
<h3 style='text-align: center'>
<a href='https://arxiv.org/abs/2405.14458' target='_blank'>arXiv</a> | <a href='https://github.com/THU-MIG/yolov10' target='_blank'>github</a>
</h3>
""")
with gr.Row():
with gr.Column():
app()
if __name__ == '__main__':
gradio_app.launch(server_port=7861)
重点是第十一行
把这个路径更改为你的models的文件夹路劲
然后回到py3.9的运行终端再次输入 app..py打开网页
解决了 一切正常 let`s 学习
(二)之后的错误
1.启动摄像头报错
(yolov10) D:\ai_train\yolov10\yolov10>python yolov10-camera.py Traceback (most recent call last): File "D:\ai_train\yolov10\yolov10\yolov10-camera.py", line 2, in <module> import supervision as sv ModuleNotFoundError: No module named 'supervision'
缺少 那就安装
pip install supervision
然后 再次启动
python yolov10-camera.py
2.桌面识别图片时报错
python yolov10-paint2.py SupervisionWarnings: BoundingBoxAnnotator is deprecated: `BoundingBoxAnnotator` is deprecated and has been renamed to `BoxAnnotator`. `BoundingBoxAnnotator` will be removed in supervision-0.26.0. 找不到窗口: th(1).jpg 找不到窗口: th(1).jpg 找不到窗口: th(1).jpg
解决;
直接复制图片窗口名字到yolov10-paint2.py第十七行 我就是手打然后报错了
(三)制作自己的模型遇到的错误
1.ModuleNotFoundError: No module named 'ultralytics'
那就安装 pip install ultralytics==8.3.0 指定版本8.3.0 因为我们的python版本是3.9
因为这个电脑没有显卡所有device=cpu
教程中device=0的意思是指定使用电脑中的第一块显卡
相关文章:

【笔记】【YOLOv10图像识别】自动识别图片、视频、摄像头、电脑桌面中的花朵学习踩坑
(一)启动 创建环境python3.9 打开此环境终端 (后面的语句操作几乎都在这个终端执行) 输入up主提供的语句:pip install -r requirements.txt 1.下载pytorch网络连接超时 pytorch网址: Start Locally | P…...

H-TCP 的效率和公平性
昨晚带安孩楼下玩耍,用手机 desmos 作了一组 response curve 置于双对数坐标系: 长肥管道的优化思路都很类似,cwnd 增长快一点: BIC TCP:二分查找逼近 capacity;CUBIC TCP:上凸曲线逼近 capa…...

集群与分布式
Cluster(集群)概述 当单独一台主机无法承载现有的用户请求量;或者一台主机因为单一故障导致业务中断的时候,就可以增加服务主机数,这些主机在一起提供服务,就叫集群,而用户所看到的依然是单个的主机,用户并…...

git rebase的常用场景: 交互式变基, 变基和本地分支基于远端分支的变基
文章目录 作用应用场景场景一:交互式变基(合并同一条线上的提交记录) —— git rebase -i HEAD~2场景二:变基(合并分支) —— git rebase [其他分支名称]场景三:本地分支与远端分支的变基 作用 使git的提交记录变得更加简洁 应用场景 场景…...

HttpURLConnection构造请求体传文件
HttpURLConnection构造请求体传文件 在Java中,使用HttpURLConnection构造请求体传输文件,你需要做以下几步: 1、创建URL对象指向你想要请求的资源。 2、通过URL打开连接,转换为HttpURLConnection实例。 3、设置请求方法为POST。 …...

STM32传感器模块编程实践(九) VL53L0X激光红外测距传感器简介及驱动源码
文章目录 一.概要二.VL53L0X测距原理三.VL53L0X主要特性四.VL53L0X硬件参考设计五.模块接线说明六.模块通讯协议介绍七.光学盖玻片介绍八.STM32单片机与VL53L0模块实现距离测量实验1.硬件准备2.软件工程3.软件主要代码4.实验效果 九.小结 一.概要 VL53L0X是一款由ST࿰…...

fastjson注解说明,fastjson注解有那些?fastjson是java的json序列化和反序列化工具包
fastjson注解说明,fastjson注解有那些?fastjson是java的json序列化和反序列化工具包 包版本说明 fastjson请使用1.2.83以上版本,小于这个版本的存在漏洞。 fastjson请使用1.2.83以上版本,小于这个版本的存在漏洞。 fastjson请使用1.2.83以上版本,小于这个版本的存在漏洞…...
VIT:论文关键点解读与常见疑问
VIT贡献点: 1. 首次将 Transformer 应用于图像识别任务 核心贡献:ViT 论文的最大贡献是提出将原本用于自然语言处理(NLP)的 Transformer 架构成功应用于图像任务。传统的计算机视觉模型主要依赖卷积神经网络(CNN&…...

ArcGIS无插件加载(无偏移)在线天地图高清影像与街道地图指南
在地理信息系统(GIS)的应用中,加载高清影像与街道地图对于地图制图、影像查阅、空间数据分析等工作至关重要。天地图作为官方出品的地图服务,以其标准的数据、较快的影像更新速度等特点受到广泛欢迎。以下是如何在ArcGIS中无插件加…...

工业相机选型(自用笔记)
可参考链接: 相机和镜头选型需要注意哪些问题_靶面尺寸-CSDN博客 工业相机选型方法_ccd工业相机选型步骤-CSDN博客 1、相机 1.1 传感器类型(CCD/CMOS) CCD相机: 1)目标是运动的则优先考虑。 2)需要高质量图像,如进行…...
【网安笔记】4种拒绝服务攻击
目录 一、SYN Flood 攻击 二、UDP Flood 攻击 三、ICMP Flood 攻击 四、HTTP Flood 攻击 拒绝服务攻击(Denial of Service attack,简称 DoS 攻击)是指攻击者通过向目标服务器或网络发送大量的请求,使其资源耗尽,无…...

WPF 的组件数据绑定详解
Windows Presentation Foundation(WPF)是微软推出的一种用于构建 Windows 应用程序的 UI 框架。WPF 提供了强大的数据绑定功能,能够轻松地将 UI 控件与数据源连接,从而实现富用户体验,分离前端设计和业务逻辑。本文将详…...

房子,它或许是沃土
刚成家,来客时,它是客房 成家后,没小孩,它是书房 有小孩,未分房,它暂且是书房 孩子大些,它是孩子们埋下梦想种子,生根发芽的地方...

【Golang】Go语言http编程底层逻辑实现原理与实战
✨✨ 欢迎大家来到景天科技苑✨✨ 🎈🎈 养成好习惯,先赞后看哦~🎈🎈 🏆 作者简介:景天科技苑 🏆《头衔》:大厂架构师,华为云开发者社区专家博主,…...

SOLIDWORKS参数化软件
在产品设计和工程领域,参数化设计是一种革命性的方法,它允许设计者通过定义一系列规则和关系来创建和修改模型。参数化设计的核心在于将设计过程分解为一系列可调整的参数,如尺寸、形状、材料属性等,这些参数之间通过数学关系相互…...

上位机开发常用技术 C# Task 线程 开始,暂停,继续,停止
上位机开发中一定会用到的技术就是 设备的线程开始运行执行生产流程,在生产过程中会有要打开安全门或暂停设备动作,人为去排除设备小问题的时就要用到暂停功能,问题排除后设备继续运行,生产完成后设备停止。 这些操作是上位机开发…...
MySQL 密码忘记了怎么办?
在使用 MySQL 的过程中,有时候我们可能会忘记密码。别担心,本文将详细介绍在 Windows 系统下如何重新设置 MySQL 密码。 一、停止 MySQL 服务 打开“服务”窗口,可以通过在 Windows 搜索栏中输入“服务”来找到并打开它。在服务列表中找到“…...
Java中常见的自带数据结构类
目录 一、ArrayList(动态数组) 特性 常用方法 二、LinkedList(双向链表) 特性 常用方法 三、ArrayDeque(双端队列) 特性 常用方法 四、HashMap(哈希表) 特性 常用方法 五、TreeMap&…...

数据结构——链表,哈希表
文章目录 链表python实现双向链表复杂度分析 哈希表(散列表)python实现哈希表哈希表的应用 链表 python实现 class Node:def __init__(self, item):self.item itemself.next Nonedef head_create_linklist(li):head Node(li[0])for element in li[1…...
如何使用Python对Excel、CSV文件完成数据清洗与预处理?
在数据分析和机器学习项目中,数据清洗与预处理是不可或缺的重要环节。 现实世界中的数据往往是不完整、不一致且含有噪声的,这些问题会严重影响数据分析的质量和机器学习模型的性能。 Python作为一门强大的编程语言,提供了多种库和工具来帮…...

wordpress后台更新后 前端没变化的解决方法
使用siteground主机的wordpress网站,会出现更新了网站内容和修改了php模板文件、js文件、css文件、图片文件后,网站没有变化的情况。 不熟悉siteground主机的新手,遇到这个问题,就很抓狂,明明是哪都没操作错误&#x…...

linux之kylin系统nginx的安装
一、nginx的作用 1.可做高性能的web服务器 直接处理静态资源(HTML/CSS/图片等),响应速度远超传统服务器类似apache支持高并发连接 2.反向代理服务器 隐藏后端服务器IP地址,提高安全性 3.负载均衡服务器 支持多种策略分发流量…...

大数据零基础学习day1之环境准备和大数据初步理解
学习大数据会使用到多台Linux服务器。 一、环境准备 1、VMware 基于VMware构建Linux虚拟机 是大数据从业者或者IT从业者的必备技能之一也是成本低廉的方案 所以VMware虚拟机方案是必须要学习的。 (1)设置网关 打开VMware虚拟机,点击编辑…...
【HarmonyOS 5 开发速记】如何获取用户信息(头像/昵称/手机号)
1.获取 authorizationCode: 2.利用 authorizationCode 获取 accessToken:文档中心 3.获取手机:文档中心 4.获取昵称头像:文档中心 首先创建 request 若要获取手机号,scope必填 phone,permissions 必填 …...
uniapp 实现腾讯云IM群文件上传下载功能
UniApp 集成腾讯云IM实现群文件上传下载功能全攻略 一、功能背景与技术选型 在团队协作场景中,群文件共享是核心需求之一。本文将介绍如何基于腾讯云IMCOS,在uniapp中实现: 群内文件上传/下载文件元数据管理下载进度追踪跨平台文件预览 二…...
面试高频问题
文章目录 🚀 消息队列核心技术揭秘:从入门到秒杀面试官1️⃣ Kafka为何能"吞云吐雾"?性能背后的秘密1.1 顺序写入与零拷贝:性能的双引擎1.2 分区并行:数据的"八车道高速公路"1.3 页缓存与批量处理…...

若依登录用户名和密码加密
/*** 获取公钥:前端用来密码加密* return*/GetMapping("/getPublicKey")public RSAUtil.RSAKeyPair getPublicKey() {return RSAUtil.rsaKeyPair();}新建RSAUti.Java package com.ruoyi.common.utils;import org.apache.commons.codec.binary.Base64; im…...

基于开源AI智能名片链动2 + 1模式S2B2C商城小程序的沉浸式体验营销研究
摘要:在消费市场竞争日益激烈的当下,传统体验营销方式存在诸多局限。本文聚焦开源AI智能名片链动2 1模式S2B2C商城小程序,探讨其在沉浸式体验营销中的应用。通过对比传统品鉴、工厂参观等初级体验方式,分析沉浸式体验的优势与价值…...
文件上传漏洞防御全攻略
要全面防范文件上传漏洞,需构建多层防御体系,结合技术验证、存储隔离与权限控制: 🔒 一、基础防护层 前端校验(仅辅助) 通过JavaScript限制文件后缀名(白名单)和大小,提…...
自定义线程池1.2
自定义线程池 1.2 1. 简介 上次我们实现了 1.1 版本,将线程池中的线程数量交给使用者决定,并且将线程的创建延迟到任务提交的时候,在本文中我们将对这个版本进行如下的优化: 在新建线程时交给线程一个任务。让线程在某种情况下…...