当前位置: 首页 > news >正文

机器学习_KNN(K近邻)算法_FaceBook_Location案例(附数据集下载链接)

Facebook_location_KNN

流程分析:

1.数据集获取(大型数据怎么获取? 放在电脑哪里? 算力怎么搞?)

2.基本数据处理(数据选取-确定特征值和目标值-分割数据集)

缩小数据范围

选择时间特征

去掉签到较少的地方

确定特征值和目标值

分割数据集

3.特征工程(特征预处理:标准化)

4.模型训练(KNN+CV)

5.模型评估

代码实现基本步骤

1.数据导入

1.1导入facebook_location_train_set(数据集大小:1.8G), 需要加载一段时间

import pandas as pd
locdata=pd.read_csv(r"C:\Users\鹰\Desktop\ML_Set\FaceBook_train.csv\FaceBook_train.csv")

1.2对数据的信息的简单分析

显示部分数据

locdata.head()

查看数据描述

locdata.describe()

查看数据行列数

locdata.shape

2.数据基本处理

2.1缺失值处理

print(“查看数据缺失值:”)
print(locdata.isna().sum())
locdata.dropna()
print(locdata.isna().sum())

2.2数据提取

缩小数据范围

locdata= locdata.query(“x>2.0 & x<2.5 & y>2.0 & y<2.5”)

选择时间特征, 对time进行转化

time=pd.to_datetime(locdata[“time”], unit=“s”)
time=pd.DatetimeIndex(time)
locdata[“day”]=time.day
locdata[“hour”]=time.hour
locdata[“weekday”]=time.weekday

去掉签到较少的地方, 在这里去掉签到次数小于三的地点

place_set= locdata.groupby(“place_id”).count()
place_set= place_set[place_set[“row_id”]>3]
locdata=locdata[locdata[“place_id”].isin(place_set.index)]

确定目标值和特征值, 用loc和iloc可以吗? 有什么区别吗?

x_all=locdata[[“x”,“y”,“accuracy”,“day”,“hour”,“weekday”]]
y_all=locdata[“place_id”]####

2.3数据集分割

from sklearn.model_selection import train_test_split
x_train, x_test, y_train, y_test=train_test_split(x_all, y_all,test_size=0.2)###
print(x_train)
print(x_test)
print(y_train)
print(y_test)

3.特征工程

3.1特征预处理-标准化

from sklearn.preprocessing import StandardScaler
scaler=StandardScaler()
x_train=scaler.fit_transform(x_train)
x_test=scaler.fit_transform(x_test)

4.模型训练-KNN+CV

4.1KNN调用

from sklearn.neighbors import KNeighborsClassifier
estimator=KNeighborsClassifier()

4.2模型优化

from sklearn.model_selection import GridSearchCV
params={“n_neighbors”:[1,3,5,7,9]}
estimator=GridSearchCV(estimator, param_grid=params, cv=5)

4.3模型训练

estimator.fit(x_train, y_train)

5.模型评估

5.1预测值

y_predict=estimator.predict(x_test)
print(“预测值为:”, y_predict)

5.2准确率

score=estimator.score(x_test,y_test)
print(“准确率为:”, score)

5.2最优模型参数:

print(“最优模型为:”, estimator.best_estimator_)

5.3最好评分

print(“最高分:”, estimator.best_score_)

数据集Facebook_Location下载地址:

链接:https://pan.baidu.com/s/1uoeo6pukkjSuLlKW9RwnCQ
提取码:7hlo

相关文章:

机器学习_KNN(K近邻)算法_FaceBook_Location案例(附数据集下载链接)

Facebook_location_KNN 流程分析: 1.数据集获取(大型数据怎么获取? 放在电脑哪里? 算力怎么搞?) 2.基本数据处理(数据选取-确定特征值和目标值-分割数据集) 缩小数据范围 选择时间特征 去掉签到较少的地方 确定特征值和目标值 分割数据集 3.特征工程(特征预处理:标…...

【str_replace替换导致的绕过】

双写绕过 随便输入一个 usernameadmin&passwords 没有回显测试注入点 usernameadmin or 11%23&passwords 回显hello admin测试列数 usernameadmin order by 3%23&passwords测试回显位 usernameadmi union select 1,2,3%23&passwords 没有显示数据&#xff0c;推…...

如何用AI大模型提升挖洞速度

工具背景 越权漏洞在黑盒测试、SRC挖掘中几乎是必测的一项&#xff0c;但手工逐个测试越权漏洞往往会耗费大量时间&#xff0c;而自动化工具又存在大量误报, 基于此产生了AutorizePro&#xff0c; 那它是怎么提升效率一起来看看 AutorizePro 是一款专注于越权检测的 Burp 插件…...

两个数列问题

# 问题描述 给定长度分别为 n 和 m 的两个数列a[n]、b[m]&#xff0c;和一个整数k。求|(a[i] - b[j])^2 - k^2|的最小值。 ## 输入格式 第一行有 2 个整数 n、m、k&#xff0c;分别表示数列 a、b 的长度&#xff0c;以及公式中的整数 k。 第二行有 n 个整数&#xff0c;表示…...

python中堆的用法

Python 堆&#xff08;Headp&#xff09; Python中堆是一种基于二叉树存储的数据结构。 主要应用场景&#xff1a; 对一个序列数据的操作基于排序的操作场景&#xff0c;例如序列数据基于最大值最小值进行的操作。 堆的数据结构&#xff1a; Python 中堆是一颗平衡二叉树&am…...

轮班管理新策略,提高效率与降低员工抱怨

良好轮班管理对企业关键&#xff0c;需提前计划、明确期望、保持灵活公平、加强沟通并利用轮班调度系统。ZohoPeople作为智能排班系统&#xff0c;提供轻松创建班次、自动更换、分配管理员、设置津贴及即时通知等功能&#xff0c;助力企业高效管理。 一、HR轮班管理的5大技巧 …...

spring-cloud-alibaba-nacos-config2023.0.1.*启动打印配置文件内容

**背景&#xff1a;**在开发测试过程中如果可以打印出配置文件的内容&#xff0c;方便确认配置是否准确&#xff1b;那么如何才可以打印出来呢&#xff1b; spring-cloud-alibaba-nacos-config 调整日志级别 logging:level:com.alibaba.cloud.nacos.configdata.NacosConfigD…...

数据结构:二叉树、堆

目录 一.树的概念 二、二叉树 1.二叉树的概念 2.特殊类型的二叉树 3.二叉树的性质 4.二叉树存储的结构 三、堆 1.堆的概念 2.堆的实现 Heap.h Heap.c 一.树的概念 注意&#xff0c;树的同一层中不能有关联&#xff0c;否侧就不是树了&#xff0c;就变成图了&#xff…...

hi3798mv100 linux 移植

# Linux开发环境搭建 ## uboot编译 1. 必须先安装gcc&#xff0c;要不然make 等命令无法使用 2. 配置arm 交叉编译链 # gcc sudo apt-get install gcc-9 gcc -v# 安装 Linaro gcc-arm-linux-gnueabihf&#xff0c;注意不是arm-linux-gnueabihf-gcc sudo apt-get install ar…...

Docker-Harbor概述及构建

文章目录 一、Docker Harbor概述1.Harbor的特性2.Harbor的构成 二、搭建本地私有仓库三、部署 Docker-Harbor 服务四、在其他客户端上传镜像五、维护管理Harbor 一、Docker Harbor概述 Harbor 是 VMware 公司开源的企业级 Docker Registry 项目&#xff0c;其目标是帮助用户迅…...

部署项目最新教程

​ 3.3安装mysql 运行代码&#xff1a; yum install mysql 运行代码&#xff1a; yum install mysql-server 中间还是一样要输入y然后回车 运行代码&#xff1a; yum install mysql-devel 好&#xff0c;经过上面三步&#xff0c;mysql安装成功&#xff0c;现在启动mysql…...

linux证明变量扩展在路径名扩展之前执行

题目&#xff1a;怎么设计一组命令来证明变量扩展在路径名扩展之前执行。 为了证明变量扩展在路径名扩展之前执行&#xff0c;可以通过编写一个简单的 shell 脚本来观察这两个过程的顺序。我们可以使用以下步骤进行设计&#xff1a; 步骤 1&#xff1a;准备环境 在你选择的 …...

CentOS 7.9安装MySQL

下载Linux版MySQL安装包 下载地址https://downloads.mysql.com/archives/community/ 下载解压后 安装&#xff0c;按照从上至下顺序&#xff0c;一条一条执行即可安装完毕。 进入到rpm所在目录rpm -ivh mysql-community-common-8.0.26-1.el7.x86_64.rpm rpm -ivh mysql-comm…...

MacOS虚拟机安装Windows停滞在“让我们为你连接到网络”,如何解决?

1. 问题描述 MacOS在虚拟机安装win11过程中&#xff0c;停止在“让我们为你连接到网络”步骤&#xff0c;页面没有任何可以点击的按钮&#xff0c;进行下一步操作。 2. 解决方案&#xff08;亲测有效&#xff09; 到达该界面&#xff0c;按下ShiftF10&#xff08;Windows&…...

黑马程序员Java笔记整理(day03)

1.switch 2.for与while对比 3.嵌套定义,输出的区别性 4.break与continue 5.随机数生成的两种方式 6.Random 7.随机验证码...

centos7更换阿里云镜像源操作步骤及命令

centos7更换阿里云镜像源 在CentOS 7上更换为阿里云的镜像源可以通过以下步骤进行&#xff1a; 备份当前的YUM源配置文件 sudo cp -a /etc/yum.repos.d /etc/yum.repos.d.backup清理原有的YUM源配置文件 sudo rm -f /etc/yum.repos.d/*.repo下载阿里云的CentOS 7源配置文件 …...

冲刺大厂 | 一个线程调用两次start()方法会出现什么现象?

大家好&#xff0c;我是冰河~~ 今天给大家分享的面试题是&#xff1a;一个线程调用两次start()方法会出现什么现象&#xff1f;这道面试题是一道关于多线程的基础面试题&#xff0c;很多小伙伴对这个面试题不太了解&#xff0c;其实&#xff0c;如果你看过JDK中关于Thread类的…...

leaflet(一)初始化地图

Leaflet 与天地图结合使用&#xff0c;可以通过天地图提供的 API 获取地图瓦片&#xff0c;并在 Leaflet 地图上显示。 1. 安装依赖 首先&#xff0c;确保你已经安装了 Leaflet 和 Vue&#xff1a; npm install leaflet npm install vue-leaflet npm install leaflet.tilela…...

Unity开发Hololens项目

Unity打包Hololens设备 目录Visual Studio2019 / Visual Studio2022 远端部署设置Visual Studio2019 / Visual Studio2022 USB部署设置Hololens设备如何查找自身IPHololens设备门户Unity工程内的打包设置 目录 记录下自己做MR相关&#xff1a;Unity和HoloLens设备的历程。 Vi…...

立志最细,FreeRtos的中断管理(Interrupt Management)函数,详解!!!

前言&#xff1a;本文参考&#xff0c;韦东山老师开发文档&#xff0c;连接放在最后。 为什么需要中断管理函数&#xff1f; 在FreeRtos操作系统中&#xff0c;需要实时响应性&#xff0c;也就是随时随地必须保证正常多任务的运行&#xff0c;如果有中断发生&#xff0c;因为中…...

【力扣数据库知识手册笔记】索引

索引 索引的优缺点 优点1. 通过创建唯一性索引&#xff0c;可以保证数据库表中每一行数据的唯一性。2. 可以加快数据的检索速度&#xff08;创建索引的主要原因&#xff09;。3. 可以加速表和表之间的连接&#xff0c;实现数据的参考完整性。4. 可以在查询过程中&#xff0c;…...

在HarmonyOS ArkTS ArkUI-X 5.0及以上版本中,手势开发全攻略:

在 HarmonyOS 应用开发中&#xff0c;手势交互是连接用户与设备的核心纽带。ArkTS 框架提供了丰富的手势处理能力&#xff0c;既支持点击、长按、拖拽等基础单一手势的精细控制&#xff0c;也能通过多种绑定策略解决父子组件的手势竞争问题。本文将结合官方开发文档&#xff0c…...

基于uniapp+WebSocket实现聊天对话、消息监听、消息推送、聊天室等功能,多端兼容

基于 ​UniApp + WebSocket​实现多端兼容的实时通讯系统,涵盖WebSocket连接建立、消息收发机制、多端兼容性配置、消息实时监听等功能,适配​微信小程序、H5、Android、iOS等终端 目录 技术选型分析WebSocket协议优势UniApp跨平台特性WebSocket 基础实现连接管理消息收发连接…...

Swift 协议扩展精进之路:解决 CoreData 托管实体子类的类型不匹配问题(下)

概述 在 Swift 开发语言中&#xff0c;各位秃头小码农们可以充分利用语法本身所带来的便利去劈荆斩棘。我们还可以恣意利用泛型、协议关联类型和协议扩展来进一步简化和优化我们复杂的代码需求。 不过&#xff0c;在涉及到多个子类派生于基类进行多态模拟的场景下&#xff0c;…...

CMake基础:构建流程详解

目录 1.CMake构建过程的基本流程 2.CMake构建的具体步骤 2.1.创建构建目录 2.2.使用 CMake 生成构建文件 2.3.编译和构建 2.4.清理构建文件 2.5.重新配置和构建 3.跨平台构建示例 4.工具链与交叉编译 5.CMake构建后的项目结构解析 5.1.CMake构建后的目录结构 5.2.构…...

屋顶变身“发电站” ,中天合创屋面分布式光伏发电项目顺利并网!

5月28日&#xff0c;中天合创屋面分布式光伏发电项目顺利并网发电&#xff0c;该项目位于内蒙古自治区鄂尔多斯市乌审旗&#xff0c;项目利用中天合创聚乙烯、聚丙烯仓库屋面作为场地建设光伏电站&#xff0c;总装机容量为9.96MWp。 项目投运后&#xff0c;每年可节约标煤3670…...

使用van-uploader 的UI组件,结合vue2如何实现图片上传组件的封装

以下是基于 vant-ui&#xff08;适配 Vue2 版本 &#xff09;实现截图中照片上传预览、删除功能&#xff0c;并封装成可复用组件的完整代码&#xff0c;包含样式和逻辑实现&#xff0c;可直接在 Vue2 项目中使用&#xff1a; 1. 封装的图片上传组件 ImageUploader.vue <te…...

C++.OpenGL (10/64)基础光照(Basic Lighting)

基础光照(Basic Lighting) 冯氏光照模型(Phong Lighting Model) #mermaid-svg-GLdskXwWINxNGHso {font-family:"trebuchet ms",verdana,arial,sans-serif;font-size:16px;fill:#333;}#mermaid-svg-GLdskXwWINxNGHso .error-icon{fill:#552222;}#mermaid-svg-GLd…...

Linux nano命令的基本使用

参考资料 GNU nanoを使いこなすnano基础 目录 一. 简介二. 文件打开2.1 普通方式打开文件2.2 只读方式打开文件 三. 文件查看3.1 打开文件时&#xff0c;显示行号3.2 翻页查看 四. 文件编辑4.1 Ctrl K 复制 和 Ctrl U 粘贴4.2 Alt/Esc U 撤回 五. 文件保存与退出5.1 Ctrl …...

Python Einops库:深度学习中的张量操作革命

Einops&#xff08;爱因斯坦操作库&#xff09;就像给张量操作戴上了一副"语义眼镜"——让你用人类能理解的方式告诉计算机如何操作多维数组。这个基于爱因斯坦求和约定的库&#xff0c;用类似自然语言的表达式替代了晦涩的API调用&#xff0c;彻底改变了深度学习工程…...