当前位置: 首页 > news >正文

1. 解读DLT698.45-2017通信规约--预连接响应

国家电网有限公司企业标准,面向对象的用电信息数据交换协议DLT698.45-2017

为提高用电信息采集系统的业务适应性、采集效率、安全性和数据溯源性,规范用电信息数据交换协议的通信架构、数据链路层、应用层、接口类与对象标识,制定本标准。

首先弄清楚服务器(从站)和客户端(主站)。

主站访问采集终端时,采集终端为服务器,主站为客户机;

主站访问电能表时,电能表为服务器,主站为客户机;

采集终端访问电能表时,电能表为服务器,采集终端为客户机。

帧格式

图片

其中帧格式中有两处校验,帧头校验HCS和帧校验FCS。

帧头校验HCS:帧头校验HCS为2字节,是对帧头部分不包含起始字符和HCS本身的所有字节的校验。

帧校验FCS:帧校验FCS为2字节,是对整帧不包含起始字符、结束字符和FCS本身的所有字节的校验。

C#为例 private static ushort[] Fcstab = new ushort[256]{            0x0000, 0x1189, 0x2312, 0x329b, 0x4624, 0x57ad, 0x6536, 0x74bf,            0x8c48, 0x9dc1, 0xaf5a, 0xbed3, 0xca6c, 0xdbe5, 0xe97e, 0xf8f7,            0x1081, 0x0108, 0x3393, 0x221a, 0x56a5, 0x472c, 0x75b7, 0x643e,            0x9cc9, 0x8d40, 0xbfdb, 0xae52, 0xdaed, 0xcb64, 0xf9ff, 0xe876,            0x2102, 0x308b, 0x0210, 0x1399, 0x6726, 0x76af, 0x4434, 0x55bd,            0xad4a, 0xbcc3, 0x8e58, 0x9fd1, 0xeb6e, 0xfae7, 0xc87c, 0xd9f5,            0x3183, 0x200a, 0x1291, 0x0318, 0x77a7, 0x662e, 0x54b5, 0x453c,            0xbdcb, 0xac42, 0x9ed9, 0x8f50, 0xfbef, 0xea66, 0xd8fd, 0xc974,            0x4204, 0x538d, 0x6116, 0x709f, 0x0420, 0x15a9, 0x2732, 0x36bb,            0xce4c, 0xdfc5, 0xed5e, 0xfcd7, 0x8868, 0x99e1, 0xab7a, 0xbaf3,            0x5285, 0x430c, 0x7197, 0x601e, 0x14a1, 0x0528, 0x37b3, 0x263a,            0xdecd, 0xcf44, 0xfddf, 0xec56, 0x98e9, 0x8960, 0xbbfb, 0xaa72,            0x6306, 0x728f, 0x4014, 0x519d, 0x2522, 0x34ab, 0x0630, 0x17b9,            0xef4e, 0xfec7, 0xcc5c, 0xddd5, 0xa96a, 0xb8e3, 0x8a78, 0x9bf1,            0x7387, 0x620e, 0x5095, 0x411c, 0x35a3, 0x242a, 0x16b1, 0x0738,            0xffcf, 0xee46, 0xdcdd, 0xcd54, 0xb9eb, 0xa862, 0x9af9, 0x8b70,            0x8408, 0x9581, 0xa71a, 0xb693, 0xc22c, 0xd3a5, 0xe13e, 0xf0b7,            0x0840, 0x19c9, 0x2b52, 0x3adb, 0x4e64, 0x5fed, 0x6d76, 0x7cff,            0x9489, 0x8500, 0xb79b, 0xa612, 0xd2ad, 0xc324, 0xf1bf, 0xe036,            0x18c1, 0x0948, 0x3bd3, 0x2a5a, 0x5ee5, 0x4f6c, 0x7df7, 0x6c7e,            0xa50a, 0xb483, 0x8618, 0x9791, 0xe32e, 0xf2a7, 0xc03c, 0xd1b5,            0x2942, 0x38cb, 0x0a50, 0x1bd9, 0x6f66, 0x7eef, 0x4c74, 0x5dfd,            0xb58b, 0xa402, 0x9699, 0x8710, 0xf3af, 0xe226, 0xd0bd, 0xc134,            0x39c3, 0x284a, 0x1ad1, 0x0b58, 0x7fe7, 0x6e6e, 0x5cf5, 0x4d7c,            0xc60c, 0xd785, 0xe51e, 0xf497, 0x8028, 0x91a1, 0xa33a, 0xb2b3,            0x4a44, 0x5bcd, 0x6956, 0x78df, 0x0c60, 0x1de9, 0x2f72, 0x3efb,            0xd68d, 0xc704, 0xf59f, 0xe416, 0x90a9, 0x8120, 0xb3bb, 0xa232,            0x5ac5, 0x4b4c, 0x79d7, 0x685e, 0x1ce1, 0x0d68, 0x3ff3, 0x2e7a,            0xe70e, 0xf687, 0xc41c, 0xd595, 0xa12a, 0xb0a3, 0x8238, 0x93b1,            0x6b46, 0x7acf, 0x4854, 0x59dd, 0x2d62, 0x3ceb, 0x0e70, 0x1ff9,            0xf78f, 0xe606, 0xd49d, 0xc514, 0xb1ab, 0xa022, 0x92b9, 0x8330,            0x7bc7, 0x6a4e, 0x58d5, 0x495c, 0x3de3, 0x2c6a, 0x1ef1, 0x0f78            };        static ushort PPPINITFCS16 = 0xffff;        private static ushort Pppfcs16(ushort fcs, byte[] cp, int len)        {            for (int i = 0; i < len; i++)                 fcs = (ushort)((fcs >> 8) ^ Fcstab[(fcs ^ cp[i]) & 0xff]);             return fcs;        }
        public static string GetFCS16(byte[] cp)        {            ushort trialfcs = Pppfcs16(PPPINITFCS16, cp, cp.Length);            trialfcs ^= 0xffff; /* complement */            string hex = ConvertHelper.TenToHex2(trialfcs & 0x00ff);            hex = hex + " " + ConvertHelper.TenToHex2((trialfcs >> 8) & 0x00ff);            return hex;        }

有了帧格式,我们就不用再通篇细看,根据需要直接构建帧

模拟场景:采集终端(集中器)和上位机交互。中继器(服务器)向客户机(主站)发起预连接请求,主站予以回应。

                                                    构建预连接请求帧

根据帧格式可以看出,帧头和帧尾基本是固定格式我们先跳过,先看APDU部分。

应用层数据单元(APDU)包括:

Link-APDU

Client-APDU

Server-APDU

Security-APDU

Link-APDU的数据类型定义如下所示:

/**LINK-APDU∷=CHOICE{  预连接请求   [1]     LINK-Request,  预连接响应   [129]   LINK-Response}**/

LINK-APDU包括预连接请求和预连接响应,正是我们想要的,接着查找预连接请求,ID是1,英文名是LINK-Request。

查看LINK-Request(预连接请求)的数据类型定义

**LINK-Request∷=SEQUENCE{   服务序号-优先级-ACD PIID-ACD   请求类型 ENUMERATED  {     登录 (0),     心跳 (1),     退出登录 (2)  },   心跳周期 long-unsigned,   请求时间 date_time}**//

可以看到,LINK-Request包括服务序号-优先级-ACD、请求类型、心跳周期、请求时间; 这就简单了,一共才四项内容。

1. 服务序号-优先级-ACD(PIID-ACD)

搜索PIID-ACD可以看到它的数据类型是"unsigned",unsigned是8位正整数,数据范围是0-255,这么说unsigned占1个字节。

接下来搜索PIID-ACD的数据类型定义

bit7(服务优先级)——0:普通优先级,1:高优先级,在应答 APDU

中,其值与请求的 APDU 相同。

bit6(请求访问 ACD)——0:不请求,1:请求。

bit0…bit5(服务序号)——二进制编码表示 0…63,在应答 APDU 中,其值与请求的 APDU 相同。

构建PIID-ACD:0x00,00000000(普通优先级,不请求,服务序号0)

2. 请求类型

也是占用1个字节,登录(0), 心跳(1), 退出登录(2)

构建请求类型:0x00,登录

3. 心跳周期

心跳周期单位是秒,类型是"long-unsigned",占16位,也就是2个字节,这里可以设置成60秒。

构建心跳周期:0x00 0x3C

4. 请求时间

类型是"date_time",占10个字节, 顺序是:

“年、月、日、一周的第几天、时、分、秒、毫秒”

其中年和毫秒占两个字节。

构建完成的LINK-Request十六进制报文

00 00 00 3C 07 E7 0B 1A 07 10 38 13 02 F8

最后在报文前加上LINK-Request的ID

01 00 00 00 3C 07 E7 0B 1A 07 10 38 13 02 F8

然后我们再回过头来把帧头和帧尾加上

帧头

1. 起始字符:68H

2. 长度域:预留

帧数据长度,是传输帧中不包含起始字符和结束字符的字节数

3. 控制域

图片

DIR和PRM组合:10(表示服务器发起的上报)

分帧标志:0(完整帧)

扰码标志SC:0(不加扰码)

功能码

图片

功能码只有两种可选,分别是001链路管理和011用户数据,这里用001。

组合在一起,控制域:10000001(0x81)

4. 地址域

地址域由"服务器地址SA"和"客户端地址CA"组成。

如图所示,服务器地址SA由 1字节地址特征 和 N个字节地址 组成。

地址类型:00(表示单地址)

逻辑地址:00(不知道就先用0,这个逻辑地址应该可以自定义)

地址长度:0011(这里假设地址长度8,占4个字节)

地址:12 23 34 45

组合在一起,服务器地址SA:00000011(03 45 34 23 12)

客户端地址CA:00(不关注客户机地址)

5. 帧头校验

帧头校验HCS为2字节,是对帧头部分不包含起始字符和HCS本身的所有字节的校验。

6 帧尾

帧校验FCS:xx xx

结束符:16H

最后完整报文如下所示:

68 xx xx 81 03 45 34 23 12 00 01 00 00 00 3C 07 E7 0B 1A 07 10 38 13 02 F8 xx xx 16

                                                              构建预连接响应帧

找到预连接响应(LINK-Response)数据类型定义

/**LINK-Response∷=SEQUENCE{   服务序号-优先级 PIID,   结果 Result,   请求时间 date_time,   收到时间 date_time,   响应时间 date_time}**/

如上所示,我们主要看其中的Result,如下是Result的数据类型定义

/**Result∷=bit-string(SIZE(8)){ bit7(时钟可信标志) (0), bit6(保留) (1), bit5(保留) (2), bit4(保留) (3), bit3(保留) (4), bit2(结果) (5), bit1(结果) (6), bit0(结果) (7)}**/

时钟可信标志——用于表示响应方的时钟是否可信,bit7=0:不可信,bit7=1:可信。

bit0…bit2——二进制编码表示结果,0:成功,1:地址重复,2:非法设备,3:容量不足,其它值:保留。

从上面可以看出预连接响应还是挺简单的,不考虑帧头帧尾,构建APDU部分:

预连接响应ID:129(0x81)

PIID(和请求帧一样):0x00,00000000(普通优先级,不请求,服务序号0)

结果Result:0x80,10000000(时钟可信,结果成功)

请求时间:请求帧里面的时间

收到时间,响应时间:注意格式是date_time就行

响应APDU: 81 00 80 (请求时间10字节) (收到时间10)(响应时间10)

响应帧头

起始符:68H    

长度域L:预留

控制域C:00000001, 0x01

00(客户机对服务器上报的响应)0(完整APDU)0(保留)0(不加扰码)001(功能码)

地址域A:同请求帧

帧头校验HCS:xx xx


响应帧尾

帧校验FCS:xx xx

结束符:16H

最后完整的响应帧

68 (长度2字节) 01 03 45 34 23 12 00 (帧头校验HCS) 81 00 80 (请求时间10字节) (收到时间10)(响应时间10)(帧校验FCS) 16

相关文章:

1. 解读DLT698.45-2017通信规约--预连接响应

国家电网有限公司企业标准&#xff0c;面向对象的用电信息数据交换协议DLT698.45-2017 为提高用电信息采集系统的业务适应性、采集效率、安全性和数据溯源性&#xff0c;规范用电信息数据交换协议的通信架构、数据链路层、应用层、接口类与对象标识&#xff0c;制定本标准。 …...

基于小波图像去噪的MATLAB实现

论文背景 数字图像处理(Digital Image Processing&#xff0c;DIP)是指用计算机辅助技术对图像信号进行处理的过程。数字图像处理最早出现于 20世纪50年代&#xff0c;随着过去几十年来计算机、网络技术和通信的快速发展&#xff0c;为信号处理这个学科领域的发展奠定了基础&a…...

[数据结构]栈的实现与应用

文章目录 一、引言二、栈的基本概念1、栈是什么2、栈的实现方式对比3、函数栈帧 三、栈的实现1、结构体定义2、初始化3、销毁4、显示5、数据操作 四、分析栈1、优点2、缺点 五、总结1、练习题2、源代码 一、引言 栈&#xff0c;作为一种基础且重要的数据结构&#xff0c;在计算…...

ESP32-C3 入门笔记04:gpio_key 按键 (ESP-IDF + VSCode)

1.GPIO简介 ESP32-C3是QFN32封装&#xff0c;GPIO引脚一共有22个&#xff0c;从GPIO0到GPIO21。 理论上&#xff0c;所有的IO都可以复用为任何外设功能&#xff0c;但有些引脚用作连接芯片内部FLASH或者外部FLASH功能时&#xff0c;官方不建议用作其它用途。 通过开发板的原…...

C语言(函数)—函数栈帧的创建和销毁

目录 前言 补充知识 一、函数线帧是什么&#xff1f; 二、函数线帧的实现&#xff08;举例说明&#xff09; 两数之和代码 ​编辑两数之和 汇编代码分析 执行第一条语句 执行第二条语句 执行第三条语句 执行第四、五、六条语句 执行第七条语句 执行第八、九、十条语句 执行第十…...

点餐小程序实战教程20广告管理

目录 1 创建数据源2 添加轮播容器3 创建变量4 绑定变量5 预览应用总结 一般餐厅需要有一些宣传&#xff0c;在我们的点餐页面可以在顶部加载广告位。广告主要是用轮播图的形式进行展示&#xff0c;本节我们介绍一下如果显示广告。 1 创建数据源 打开控制台&#xff0c;点击应用…...

市场上几个跨平台开发框架?

跨平台桌面应用开发框架是一种工具或框架&#xff0c;它允许开发者使用一种统一的代码库或语言来创建能够在多个操作系统上运行的桌面应用程序。传统上&#xff0c;开发者需要为每个操作系统编写不同的代码&#xff0c;使用不同的开发工具和语言。而跨平台桌面应用开发框架通过…...

同步和异步、引用、变量声明、全局变量

同步和异步 如果计算机足够快&#xff0c;任何资源的访问速度都像Cache一样&#xff0c;没有异步的必要。 编程语言的同步和异步 越早期的编程语言&#xff0c;支持语言级别的异步越欠缺。 JS提供某些操作的同步和异步函数&#xff0c;例如文件读取&#xff0c;fs.readFile和fs…...

2024年10月份实时获取地图边界数据方法,省市区县街道多级联动【附实时geoJson数据下载】

首先&#xff0c;来看下效果图 在线体验地址&#xff1a;https://geojson.hxkj.vip&#xff0c;并提供实时geoJson数据文件下载 可下载的数据包含省级geojson行政边界数据、市级geojson行政边界数据、区/县级geojson行政边界数据、省市区县街道行政编码四级联动数据&#xff0…...

@RequestMapping对不同参数的接收方式

1、简单参数 1、参数名与形参变量名相同&#xff0c;定义形参即可接收参数&#xff0c;且会自动进行类型转换。 RequestMapping("/simple")public String simpleParam(String name,int age){String username name;int userAge age;System.out.println(username&…...

机器学习_KNN(K近邻)算法_FaceBook_Location案例(附数据集下载链接)

Facebook_location_KNN 流程分析: 1.数据集获取(大型数据怎么获取? 放在电脑哪里? 算力怎么搞?) 2.基本数据处理(数据选取-确定特征值和目标值-分割数据集) 缩小数据范围 选择时间特征 去掉签到较少的地方 确定特征值和目标值 分割数据集 3.特征工程(特征预处理:标…...

【str_replace替换导致的绕过】

双写绕过 随便输入一个 usernameadmin&passwords 没有回显测试注入点 usernameadmin or 11%23&passwords 回显hello admin测试列数 usernameadmin order by 3%23&passwords测试回显位 usernameadmi union select 1,2,3%23&passwords 没有显示数据&#xff0c;推…...

如何用AI大模型提升挖洞速度

工具背景 越权漏洞在黑盒测试、SRC挖掘中几乎是必测的一项&#xff0c;但手工逐个测试越权漏洞往往会耗费大量时间&#xff0c;而自动化工具又存在大量误报, 基于此产生了AutorizePro&#xff0c; 那它是怎么提升效率一起来看看 AutorizePro 是一款专注于越权检测的 Burp 插件…...

两个数列问题

# 问题描述 给定长度分别为 n 和 m 的两个数列a[n]、b[m]&#xff0c;和一个整数k。求|(a[i] - b[j])^2 - k^2|的最小值。 ## 输入格式 第一行有 2 个整数 n、m、k&#xff0c;分别表示数列 a、b 的长度&#xff0c;以及公式中的整数 k。 第二行有 n 个整数&#xff0c;表示…...

python中堆的用法

Python 堆&#xff08;Headp&#xff09; Python中堆是一种基于二叉树存储的数据结构。 主要应用场景&#xff1a; 对一个序列数据的操作基于排序的操作场景&#xff0c;例如序列数据基于最大值最小值进行的操作。 堆的数据结构&#xff1a; Python 中堆是一颗平衡二叉树&am…...

轮班管理新策略,提高效率与降低员工抱怨

良好轮班管理对企业关键&#xff0c;需提前计划、明确期望、保持灵活公平、加强沟通并利用轮班调度系统。ZohoPeople作为智能排班系统&#xff0c;提供轻松创建班次、自动更换、分配管理员、设置津贴及即时通知等功能&#xff0c;助力企业高效管理。 一、HR轮班管理的5大技巧 …...

spring-cloud-alibaba-nacos-config2023.0.1.*启动打印配置文件内容

**背景&#xff1a;**在开发测试过程中如果可以打印出配置文件的内容&#xff0c;方便确认配置是否准确&#xff1b;那么如何才可以打印出来呢&#xff1b; spring-cloud-alibaba-nacos-config 调整日志级别 logging:level:com.alibaba.cloud.nacos.configdata.NacosConfigD…...

数据结构:二叉树、堆

目录 一.树的概念 二、二叉树 1.二叉树的概念 2.特殊类型的二叉树 3.二叉树的性质 4.二叉树存储的结构 三、堆 1.堆的概念 2.堆的实现 Heap.h Heap.c 一.树的概念 注意&#xff0c;树的同一层中不能有关联&#xff0c;否侧就不是树了&#xff0c;就变成图了&#xff…...

hi3798mv100 linux 移植

# Linux开发环境搭建 ## uboot编译 1. 必须先安装gcc&#xff0c;要不然make 等命令无法使用 2. 配置arm 交叉编译链 # gcc sudo apt-get install gcc-9 gcc -v# 安装 Linaro gcc-arm-linux-gnueabihf&#xff0c;注意不是arm-linux-gnueabihf-gcc sudo apt-get install ar…...

Docker-Harbor概述及构建

文章目录 一、Docker Harbor概述1.Harbor的特性2.Harbor的构成 二、搭建本地私有仓库三、部署 Docker-Harbor 服务四、在其他客户端上传镜像五、维护管理Harbor 一、Docker Harbor概述 Harbor 是 VMware 公司开源的企业级 Docker Registry 项目&#xff0c;其目标是帮助用户迅…...

部署项目最新教程

​ 3.3安装mysql 运行代码&#xff1a; yum install mysql 运行代码&#xff1a; yum install mysql-server 中间还是一样要输入y然后回车 运行代码&#xff1a; yum install mysql-devel 好&#xff0c;经过上面三步&#xff0c;mysql安装成功&#xff0c;现在启动mysql…...

linux证明变量扩展在路径名扩展之前执行

题目&#xff1a;怎么设计一组命令来证明变量扩展在路径名扩展之前执行。 为了证明变量扩展在路径名扩展之前执行&#xff0c;可以通过编写一个简单的 shell 脚本来观察这两个过程的顺序。我们可以使用以下步骤进行设计&#xff1a; 步骤 1&#xff1a;准备环境 在你选择的 …...

CentOS 7.9安装MySQL

下载Linux版MySQL安装包 下载地址https://downloads.mysql.com/archives/community/ 下载解压后 安装&#xff0c;按照从上至下顺序&#xff0c;一条一条执行即可安装完毕。 进入到rpm所在目录rpm -ivh mysql-community-common-8.0.26-1.el7.x86_64.rpm rpm -ivh mysql-comm…...

MacOS虚拟机安装Windows停滞在“让我们为你连接到网络”,如何解决?

1. 问题描述 MacOS在虚拟机安装win11过程中&#xff0c;停止在“让我们为你连接到网络”步骤&#xff0c;页面没有任何可以点击的按钮&#xff0c;进行下一步操作。 2. 解决方案&#xff08;亲测有效&#xff09; 到达该界面&#xff0c;按下ShiftF10&#xff08;Windows&…...

黑马程序员Java笔记整理(day03)

1.switch 2.for与while对比 3.嵌套定义,输出的区别性 4.break与continue 5.随机数生成的两种方式 6.Random 7.随机验证码...

centos7更换阿里云镜像源操作步骤及命令

centos7更换阿里云镜像源 在CentOS 7上更换为阿里云的镜像源可以通过以下步骤进行&#xff1a; 备份当前的YUM源配置文件 sudo cp -a /etc/yum.repos.d /etc/yum.repos.d.backup清理原有的YUM源配置文件 sudo rm -f /etc/yum.repos.d/*.repo下载阿里云的CentOS 7源配置文件 …...

冲刺大厂 | 一个线程调用两次start()方法会出现什么现象?

大家好&#xff0c;我是冰河~~ 今天给大家分享的面试题是&#xff1a;一个线程调用两次start()方法会出现什么现象&#xff1f;这道面试题是一道关于多线程的基础面试题&#xff0c;很多小伙伴对这个面试题不太了解&#xff0c;其实&#xff0c;如果你看过JDK中关于Thread类的…...

leaflet(一)初始化地图

Leaflet 与天地图结合使用&#xff0c;可以通过天地图提供的 API 获取地图瓦片&#xff0c;并在 Leaflet 地图上显示。 1. 安装依赖 首先&#xff0c;确保你已经安装了 Leaflet 和 Vue&#xff1a; npm install leaflet npm install vue-leaflet npm install leaflet.tilela…...

Unity开发Hololens项目

Unity打包Hololens设备 目录Visual Studio2019 / Visual Studio2022 远端部署设置Visual Studio2019 / Visual Studio2022 USB部署设置Hololens设备如何查找自身IPHololens设备门户Unity工程内的打包设置 目录 记录下自己做MR相关&#xff1a;Unity和HoloLens设备的历程。 Vi…...

立志最细,FreeRtos的中断管理(Interrupt Management)函数,详解!!!

前言&#xff1a;本文参考&#xff0c;韦东山老师开发文档&#xff0c;连接放在最后。 为什么需要中断管理函数&#xff1f; 在FreeRtos操作系统中&#xff0c;需要实时响应性&#xff0c;也就是随时随地必须保证正常多任务的运行&#xff0c;如果有中断发生&#xff0c;因为中…...