当前位置: 首页 > news >正文

【Linux】进程间通信(匿名管道)

 🌈个人主页:秦jh__https://blog.csdn.net/qinjh_?spm=1010.2135.3001.5343
🔥 系列专栏:https://blog.csdn.net/qinjh_/category_12625432.html

9efbcbc3d25747719da38c01b3fa9b4f.gif

目录

进程间通信目的 

进程间通信发展

 进程间通信分类

管道

System V IPC 

POSIX IPC 

管道 

匿名管道

使用管道通信的demo 

 进程池实现


前言

    💬 hello! 各位铁子们大家好哇。

             今日更新了Linux进程间通信的内容
    🎉 欢迎大家关注🔍点赞👍收藏⭐️留言📝

进程间通信目的 

  • 数据传输:一个进程需要将它的数据发送给另一个进程
  • 资源共享:多个进程之间共享同样的资源。
  • 通知事件:一个进程需要向另一个或一组进程发送消息,通知它(它们)发生了某种事件(如进程终止 时要通知父进程)。
  • 进程控制:有些进程希望完全控制另一个进程的执行(如Debug进程),此时控制进程希望能够拦截另 一个进程的所有陷入和异常,并能够及时知道它的状态改变。 

进程间通信发展

  • 管道
  • System V进程间通信
  • POSIX进程间通信

进程间通信的前提:先让不同的进程,看到同一份(操作系统)资源(”一段内存“)。

进程间通信一定是某一个进程先需要通信,让OS创建一个共享资源。此时OS必须提供很多系统调用。

OS创建的共享资源的不同,系统调用接口也就不同,所以进程间通信会有不同的种类。

 进程间通信分类

管道

  • 匿名管道pipe
  • 命名管道 

System V IPC 

  • System V 消息队列
  • System V 共享内存
  • System V 信号量 

POSIX IPC 

  • 消息队列
  • 共享内存
  • 信号量
  • 互斥量
  • 条件变量
  • 读写锁 

管道 

匿名管道

一个进程将同一个文件打开两次,一次以写方式打开,另一次以读方式打开。此时会创建两个struct file,而文件的属性会共用,不会额外创建。

如果此时又创建了子进程,子进程会继承父进程的文件描述符表,指向同一个文件。我们把上面父子进程都看到的文件,叫管道文件。

管道只允许单向通信。

管道里的内容不需要刷新到磁盘。

未来要用父进程写,子进程读的话,在fork之后,各自关闭掉不用的文件描述符即可。 不用的描述符建议关闭,因为未来可能会误用,或者导致文件描述符泄露。

功能:创建匿名管道

参数:

pipefd[2]:文件描述符数组,其中fd[0]表示读端, fd[1]表示写端。它是输出型参数。

返回值:成功返回0,失败返回错误代码

使用管道通信的demo 

 上图是创建管道,pipe的使用的例子。

下面是测试的完整代码:

#include <iostream>
#include <string>
#include <cerrno>  // errno.h
#include <cstring> // string.h
#include <unistd.h>
#include <sys/types.h>
#include <sys/wait.h>const int size = 1024;std::string getOtherMessage()
{static int cnt = 0;std::string messageid = std::to_string(cnt); cnt++;pid_t self_id = getpid();std::string stringpid = std::to_string(self_id);std::string message = "messageid: ";message += messageid;message += " my pid is : ";message += stringpid;return message;
}// 子进程进行写入
void SubProcessWrite(int wfd)
{int pipesize = 0;std::string message = "father, I am your son prcess!";char c = 'A';while (true){std::cerr << "+++++++++++++++++++++++++++++++++" << std::endl;std::string info = message + getOtherMessage(); // 这条消息,就是我们子进程发给父进程的消息write(wfd, info.c_str(), info.size()); // 写入管道的时候,没有写入\0,std::cerr << info << std::endl;// sleep(1); // 子进程写慢一点// write(wfd, &c, 1);// std::cout << "pipesize: " << ++pipesize << " write charator is : "<< c++ << std::endl;// // if(c == 'G') break;// sleep(1);}std::cout << "child quit ..." << std::endl;
}// 父进程进行读取
void FatherProcessRead(int rfd)
{char inbuffer[size]; // c99 , gnu g99while (true){sleep(2);std::cout << "-------------------------------------------" << std::endl;// sleep(500);ssize_t n = read(rfd, inbuffer, sizeof(inbuffer) - 1);if (n > 0){inbuffer[n] = 0; // == '\0'std::cout  << inbuffer << std::endl;}else if (n == 0){// 如果read的返回值是0,表示写端直接关闭了,我们读到了文件的结尾std::cout << "client quit, father get return val: " << n << " father quit too!" << std::endl;break;}else if(n < 0)  //读取失败{std::cerr << "read error" << std::endl;break;}// sleep(1);// break;}
}int main()
{// 1. 创建管道int pipefd[2];int n = pipe(pipefd); // 输出型参数,rfd, wfdif (n != 0){std::cerr << "errno: " << errno << ": "<< "errstring : " << strerror(errno) << std::endl;return 1;}std::cout << "pipefd[0]: " << pipefd[0] << ", pipefd[1]: " << pipefd[1] << std::endl;sleep(1);// 2. 创建子进程pid_t id = fork();if (id == 0){std::cout << "子进程关闭不需要的fd了, 准备发消息了" << std::endl;sleep(1);// 子进程 --- write// 3. 关闭不需要的fdclose(pipefd[0]);// if(fork() > 0) exit(0);SubProcessWrite(pipefd[1]);close(pipefd[1]);exit(0);}std::cout << "父进程关闭不需要的fd了, 准备收消息了" << std::endl;sleep(1);// 父进程 --- read// 3. 关闭不需要的fdclose(pipefd[1]);FatherProcessRead(pipefd[0]);std::cout << "5s, father close rfd" << std::endl;sleep(5);close(pipefd[0]);int status = 0;pid_t rid = waitpid(id, &status, 0);if (rid > 0){std::cout << "wait child process done, exit sig: " << (status&0x7f) << std::endl;std::cout << "wait child process done, exit code(ign): " << ((status>>8)&0xFF) << std::endl;}return 0;
}

管道的四种情况:

  1. 如果管道内部是空的,并且写端fd没有关闭,此时读取条件不具备,读进程会被阻塞,读进程会等待,直到写端写入数据。
  2.  如果管道被写满,并且读端fd不读且没有关闭,此时写进程会被阻塞,写端会等待,直到数据被读取。
  3. 如果管道一直在读并且写端关闭了wfd,读端read返回值会读到0,表示读到文件结尾。
  4. 如果读端rfd直接关闭,写端wfd一直在写入,那么写端进程会被OS直接用13号信号关掉,相当于进程出现了异常。

管道的特征:

  1. 匿名管道:只用来进行具有血缘关系的进程之间,进行通信,常用于父子进程之间通信
  2. 管道文件的生命周期是随进程的
  3. 管道内部,自带进程之间同步的机制(多执行流执行代码的时候,具有明显的顺序性)
  4. 管道文件在通信的时候,是面向字节流的。(写的次数和读取的次数不是一一匹配的)
  5. 管道的通信模式,是一种特殊的半双工模式,数据只能向一个方向流动;需要双方通信时,需要建立起两个管道

 

  • 当要写入的数据量不大于PIPE_BUF时,linux将保证写入的原子性。
  • 当要写入的数据量大于PIPE_BUF时,linux将不再保证写入的原子性。 

原子的意思就是这次的写入操作不会被中断。写的时候,不会写一半就被读走。在读方看来,要么不写,要么写完了。 

当shell执行用管道连接起来的多条命令时,shell内部会把他们各自变成一个进程,他们是同时启动的。他们的父进程都是bash,他们是兄弟关系。所以命令行上的 | 就是匿名管道。 

 进程池实现

 ProcessPool.cc

#include <iostream>
#include <string>
#include <vector>
#include <unistd.h>
#include <sys/types.h>
#include <sys/wait.h>
#include "Task.hpp"// void work(int rfd)
// {
//     while (true)
//     {
//         int command = 0;
//         int n = read(rfd, &command, sizeof(command));
//         if (n == sizeof(int))
//         {
//             std::cout << "pid is : " << getpid() << " handler task" << std::endl;
//             ExcuteTask(command);
//         }
//         else if (n == 0)
//         {
//             std::cout << "sub process : " << getpid() << " quit" << std::endl;
//             break;
//         }
//     }
// }// master
class Channel
{
public:Channel(int wfd, pid_t id, const std::string &name): _wfd(wfd), _subprocessid(id), _name(name){}int GetWfd() { return _wfd; }pid_t GetProcessId() { return _subprocessid; }std::string GetName() { return _name; }void CloseChannel(){close(_wfd);}void Wait(){pid_t rid = waitpid(_subprocessid, nullptr, 0);if (rid > 0){std::cout << "wait " << rid << " success" << std::endl;}}~Channel(){}private:int _wfd;pid_t _subprocessid;std::string _name;
};// 形参类型和命名规范
// const &: 输入
// & : 输入输出型参数
// * : 输出型参数
//  task_t task: 回调函数
void CreateChannelAndSub(int num, std::vector<Channel> *channels, task_t task)
{for (int i = 0; i < num; i++){// 1. 创建管道int pipefd[2] = {0};int n = pipe(pipefd);if (n < 0)exit(1);// 2. 创建子进程pid_t id = fork();if (id == 0){if (!channels->empty())   {// 第二次之后,开始创建的管道要关闭继承下来的写端for(auto &channel : *channels) channel.CloseChannel();}// child - readclose(pipefd[1]);dup2(pipefd[0], 0); // 将管道的读端,重定向到标准输入task();close(pipefd[0]);exit(0);}// 3.构建一个channel名称std::string channel_name = "Channel-" + std::to_string(i);// 父进程close(pipefd[0]);// a. 子进程的pid b. 父进程关心的管道的w端channels->push_back(Channel(pipefd[1], id, channel_name));}
}// 0 1 2 3 4 channelnum
int NextChannel(int channelnum)
{static int next = 0;int channel = next;next++;next %= channelnum;return channel;
}void SendTaskCommand(Channel &channel, int taskcommand)
{write(channel.GetWfd(), &taskcommand, sizeof(taskcommand));
}
void ctrlProcessOnce(std::vector<Channel> &channels)
{sleep(1);// a. 选择一个任务int taskcommand = SelectTask();// b. 选择一个信道和进程int channel_index = NextChannel(channels.size());// c. 发送任务SendTaskCommand(channels[channel_index], taskcommand);std::cout << std::endl;std::cout << "taskcommand: " << taskcommand << " channel: "<< channels[channel_index].GetName() << " sub process: " << channels[channel_index].GetProcessId() << std::endl;
}
void ctrlProcess(std::vector<Channel> &channels, int times = -1)
{if (times > 0){while (times--){ctrlProcessOnce(channels);}}else{while (true){ctrlProcessOnce(channels);}}
}void CleanUpChannel(std::vector<Channel> &channels)
{// int num = channels.size() -1;// while(num >= 0)// {//     channels[num].CloseChannel();//     channels[num--].Wait();// }for (auto &channel : channels){channel.CloseChannel();channel.Wait();}// // 注意// for (auto &channel : channels)// {//     channel.Wait();// }
}// ./processpool 5
int main(int argc, char *argv[])
{if (argc != 2){std::cerr << "Usage: " << argv[0] << " processnum" << std::endl;return 1;}int num = std::stoi(argv[1]);LoadTask();std::vector<Channel> channels;// 1. 创建信道和子进程CreateChannelAndSub(num, &channels, work1);// 2. 通过channel控制子进程ctrlProcess(channels, 5);// 3. 回收管道和子进程. a. 关闭所有的写端 b. 回收子进程CleanUpChannel(channels);// sleep(100);return 0;
}

 如上图,左边是父进程,右边是子进程。创建子进程的时候,从第二个子进程开始,创建的时候会继承父进程之前的文件描述符,也就会连接到进程1的写端。随着子进程的增加,越来越多描述符指向先前的管道的写端 ,就会导致要关闭管道时,写端没关完,读端读不到,就会造成阻塞,进程就退出不了。所以要在创建第二个及以后的进程的时候,把继承的写端关掉,如下图:

 Task.hpp

#pragma once#include <iostream>
#include <ctime>
#include <cstdlib>
#include <sys/types.h>
#include <unistd.h>#define TaskNum 3typedef void (*task_t)(); // task_t 函数指针类型void Print()
{std::cout << "I am print task" << std::endl;
}
void DownLoad()
{std::cout << "I am a download task" << std::endl;
}
void Flush()
{std::cout << "I am a flush task" << std::endl;
}task_t tasks[TaskNum];void LoadTask()
{srand(time(nullptr) ^ getpid() ^ 17777);tasks[0] = Print;tasks[1] = DownLoad;tasks[2] = Flush;
}void ExcuteTask(int number)
{if (number < 0 || number > 2)return;tasks[number]();
}int SelectTask()
{return rand() % TaskNum;
}void work()
{while (true){int command = 0;int n = read(0, &command, sizeof(command));if (n == sizeof(int)){std::cout << "pid is : " << getpid() << " handler task" << std::endl;ExcuteTask(command);}else if (n == 0){std::cout << "sub process : " << getpid() << " quit" << std::endl;break;}}
}void work1()
{while (true){int command = 0;int n = read(0, &command, sizeof(command));if (n == sizeof(int)){std::cout << "pid is : " << getpid() << " handler task" << std::endl;ExcuteTask(command);}else if (n == 0){std::cout << "sub process : " << getpid() << " quit" << std::endl;break;}}
}void work2()
{while (true){int command = 0;int n = read(0, &command, sizeof(command));if (n == sizeof(int)){std::cout << "pid is : " << getpid() << " handler task" << std::endl;ExcuteTask(command);}else if (n == 0){std::cout << "sub process : " << getpid() << " quit" << std::endl;break;}}
}

相关文章:

【Linux】进程间通信(匿名管道)

&#x1f308;个人主页&#xff1a;秦jh__https://blog.csdn.net/qinjh_?spm1010.2135.3001.5343&#x1f525; 系列专栏&#xff1a;https://blog.csdn.net/qinjh_/category_12625432.html 目录 进程间通信目的 进程间通信发展 进程间通信分类 管道 System V IPC POSI…...

memset()函数的实现

memset()函数的实现 _CRTIMP void* __cdecl memset (void*, int, size_t); memset()函数的实现 文章目录 memset()函数的实现memset()函数 memset()函数 _CRTIMP void* __cdecl memset (void*, int, size_t);void* memset(void* src, int val, size_t count) {char *char_src…...

STM32CUBEIDE FreeRTOS操作教程(七):queue队列

STM32CUBEIDE FreeRTOS操作教程&#xff08;七&#xff09;&#xff1a;queue队列 STM32CUBE开发环境集成了STM32 HAL库进行FreeRTOS配置和开发的组件&#xff0c;不需要用户自己进行FreeRTOS的移植。这里介绍最简化的用户操作类应用教程。以STM32F401RCT6开发板为例&#xff…...

类型转换与字符串操作:数据的灵活变形!

Java中的隐式与强制类型转换&#xff1a;让你轻松驾驭数据 在编程的世界中&#xff0c;数据的类型如同游戏中的角色&#xff0c;赋予它们不同的特性与能力。而在Java中&#xff0c;隐式类型转换与强制类型转换就像是两把利剑&#xff0c;帮助我们在这个复杂的世界中游刃有余。…...

动态规划18:188. 买卖股票的最佳时机 IV

动态规划解题步骤&#xff1a; 1.确定状态表示&#xff1a;dp[i]是什么 2.确定状态转移方程&#xff1a;dp[i]等于什么 3.初始化&#xff1a;确保状态转移方程不越界 4.确定填表顺序&#xff1a;根据状态转移方程即可确定填表顺序 5.确定返回值 题目链接&#xff1a;188.…...

YOLOv8改进 - 注意力篇 - 引入ShuffleAttention注意力机制

一、本文介绍 作为入门性篇章&#xff0c;这里介绍了ShuffleAttention注意力在YOLOv8中的使用。包含ShuffleAttention原理分析&#xff0c;ShuffleAttention的代码、ShuffleAttention的使用方法、以及添加以后的yaml文件及运行记录。 二、ShuffleAttention原理分析 ShuffleA…...

基于Multisim的8路彩灯循环控制电路设计与仿真

1)由八个彩灯LED的明暗构成各种彩灯图形; 2)彩灯依次显示的图形: 彩灯从左至右渐亮至全亮(8个CP) 彩灯从左至右渐灭至全灭(8个CP) 彩灯从右至左渐亮至全亮(8个CP) 彩灯从右至左渐灭至全灭(8个CP) 彩灯全亮(1个CP) 彩灯全灭(1个CP) 彩灯全亮(1个CP) 彩灯全灭(1个CP) 3)彩灯图形循…...

完整的模型训练套路 pytorch

**前置知识&#xff1a; 1、 &#xff08;1&#xff09;.train()&#xff1a;将模型设置为训练模式 &#xff08;2&#xff09;.eval()&#xff1a;将模型设置为评估模式 不写也可以&#xff08;只对特定网络模型有作用&#xff0c;如含有Dropout的&#xff09; 2、 with…...

2024年十大前沿图像分割模型汇总:工作机制、优点和缺点介绍

《博主简介》 小伙伴们好&#xff0c;我是阿旭。专注于人工智能、AIGC、python、计算机视觉相关分享研究。 ✌更多学习资源&#xff0c;可关注公-仲-hao:【阿旭算法与机器学习】&#xff0c;共同学习交流~ &#x1f44d;感谢小伙伴们点赞、关注&#xff01; 《------往期经典推…...

Notepad++将搜索内容所在行选中,并进行复制等操作

背景 Notepad在非常多的数据行内容中&#xff0c;按照指定内容检索&#xff0c;并定位到具体行&#xff0c;而后对内容行的数据进行复制、剪切、删除等处理动作。 操作说明 检索并标记所在行 弹出搜索框&#xff1a;按下 Ctrl F。 输入查找字符串&#xff1a;在搜索框中输入要…...

[Java EE] IP 协议 | NAT 机制 | 路由选择 | MAC 地址 | 域名解析服务

Author&#xff1a;MTingle major:人工智能 Build your hopes like a tower! 目录 一. 初识 IP 协议 IP 协议报头: 二. IP 协议如何管理地址 NAT机制 路由选择 三. 数据链路层(以太网): MAC地址 四. 域名解析系统 一. 初识 IP 协议 IP 协议工作在网络层,其目标是为了在复…...

赋能特大城市水务数据安全高速运算,深圳计算科学研究院YashanDB数据库系统斩获“鼎新杯”二等奖

第三届“鼎新杯”数字化转型应用优秀案例评选结果日前正式公布&#xff0c;深圳计算科学研究院联合深圳市环境水务集团有限公司申报的《深圳环境水务国产数据库YashanDB&#xff0c;赋能特大城市水务数据安全高速运转》案例&#xff0c;经过5个多月的评审&#xff0c;从4000申报…...

RAYDATA链接PGSQL做图表

1.拖一个脚本进去 2.拖一个柱状图进去 3.双击脚本写代码 using System; using System.Collections; using System.Collections.Generic; using System.Linq; using Ventuz.Kernel; using Npgsql; using System.Threading; using System.Threading.Tasks;public class Script…...

UE5里的TObjectPtr TSharedPtr TWeakPtr有什么区别

在 Unreal Engine&#xff08;UE&#xff09;编程中&#xff0c;TObjectPtr、TSharedPtr 和 TWeakPtr 都是 指针类型&#xff0c;但它们在生命周期管理和使用场景上有不同的特点。让我们详细分析这些指针的区别和用途。 TObjectPtr TObjectPtr 是 UE5 中引入的新智能指针类型…...

前端--深入理解HTTP协议

HTTP 协议简介 HTTP&#xff08;HyperText Transfer Protocol&#xff0c;超文本传输协议&#xff09;是一个应用层协议&#xff0c;用于在客户端&#xff08;通常是浏览器&#xff09;和服务器之间传输超文本数据&#xff08;如 HTML、CSS、JavaScript 等&#xff09;。它是万…...

线性代数 向量

一、定义 几何定义&#xff1a;向量是一个有方向和大小的量&#xff0c;通常用箭头表示。向量的起点称为原点&#xff0c;终点称为向量的端点。 代数定义&#xff1a;向量是一个有序的数组&#xff0c;通常表示为列向量或行向量。 行向量就是 1*n的形式&#xff08;行展开&…...

go中阶乘实现时递归及迭代方式的比较

package mainimport ("fmt""time""math/big" )// 使用递归和 big.Int 计算阶乘 func FactorialRecursive(n *big.Int) *big.Int {if n.Cmp(big.NewInt(0)) 0 {return big.NewInt(1)}return new(big.Int).Mul(n, FactorialRecursive(new(big.Int…...

Jupyter notebook中更改字体大小

文章目录 方法一&#xff1a;局部修改方法二&#xff1a;全局修改 Jupyter notebook提供了一个非常方便的跨平台交互代码编译环境&#xff0c;但是单元格的内的代码字体往往显示较小&#xff0c;不利于观看。本人查了很多方法来调整字体&#xff0c;后来发现既不需要更改jupyte…...

关于Ubuntu服务器的时间同步设置以及Linux什么时候开始使用swap虚拟内存

一、关于Ubuntu服务器的时间同步设置 首先我们检查一下服务器的时区设置和当前时间值&#xff0c;获取/etc/timezone 配置以及使用date命令查看当前时间。 rootiZ2ze7n2ynw18p6bs92fziZ:~# cat /etc/timezone Asia/Shanghai rootiZ2ze7n2ynw18p6bs92fziZ:~# date Wed Dec 21 …...

Java Stream API 详解

Java Stream API 详解 1. 什么是 Stream API&#xff1f; Stream API 是 Java 8 引入的一种用于处理集合&#xff08;如数组、列表&#xff09;的强大工具。它提供了一种声明性方式处理数据&#xff0c;可以简化代码并提高可读性。Stream 不是数据结构&#xff0c;它只是一种…...

Android Wi-Fi 连接失败日志分析

1. Android wifi 关键日志总结 (1) Wi-Fi 断开 (CTRL-EVENT-DISCONNECTED reason3) 日志相关部分&#xff1a; 06-05 10:48:40.987 943 943 I wpa_supplicant: wlan0: CTRL-EVENT-DISCONNECTED bssid44:9b:c1:57:a8:90 reason3 locally_generated1解析&#xff1a; CTR…...

376. Wiggle Subsequence

376. Wiggle Subsequence 代码 class Solution { public:int wiggleMaxLength(vector<int>& nums) {int n nums.size();int res 1;int prediff 0;int curdiff 0;for(int i 0;i < n-1;i){curdiff nums[i1] - nums[i];if( (prediff > 0 && curdif…...

让AI看见世界:MCP协议与服务器的工作原理

让AI看见世界&#xff1a;MCP协议与服务器的工作原理 MCP&#xff08;Model Context Protocol&#xff09;是一种创新的通信协议&#xff0c;旨在让大型语言模型能够安全、高效地与外部资源进行交互。在AI技术快速发展的今天&#xff0c;MCP正成为连接AI与现实世界的重要桥梁。…...

【HTTP三个基础问题】

面试官您好&#xff01;HTTP是超文本传输协议&#xff0c;是互联网上客户端和服务器之间传输超文本数据&#xff08;比如文字、图片、音频、视频等&#xff09;的核心协议&#xff0c;当前互联网应用最广泛的版本是HTTP1.1&#xff0c;它基于经典的C/S模型&#xff0c;也就是客…...

C/C++ 中附加包含目录、附加库目录与附加依赖项详解

在 C/C 编程的编译和链接过程中&#xff0c;附加包含目录、附加库目录和附加依赖项是三个至关重要的设置&#xff0c;它们相互配合&#xff0c;确保程序能够正确引用外部资源并顺利构建。虽然在学习过程中&#xff0c;这些概念容易让人混淆&#xff0c;但深入理解它们的作用和联…...

C++.OpenGL (20/64)混合(Blending)

混合(Blending) 透明效果核心原理 #mermaid-svg-SWG0UzVfJms7Sm3e {font-family:"trebuchet ms",verdana,arial,sans-serif;font-size:16px;fill:#333;}#mermaid-svg-SWG0UzVfJms7Sm3e .error-icon{fill:#552222;}#mermaid-svg-SWG0UzVfJms7Sm3e .error-text{fill…...

AI+无人机如何守护濒危物种?YOLOv8实现95%精准识别

【导读】 野生动物监测在理解和保护生态系统中发挥着至关重要的作用。然而&#xff0c;传统的野生动物观察方法往往耗时耗力、成本高昂且范围有限。无人机的出现为野生动物监测提供了有前景的替代方案&#xff0c;能够实现大范围覆盖并远程采集数据。尽管具备这些优势&#xf…...

【JVM面试篇】高频八股汇总——类加载和类加载器

目录 1. 讲一下类加载过程&#xff1f; 2. Java创建对象的过程&#xff1f; 3. 对象的生命周期&#xff1f; 4. 类加载器有哪些&#xff1f; 5. 双亲委派模型的作用&#xff08;好处&#xff09;&#xff1f; 6. 讲一下类的加载和双亲委派原则&#xff1f; 7. 双亲委派模…...

Golang——9、反射和文件操作

反射和文件操作 1、反射1.1、reflect.TypeOf()获取任意值的类型对象1.2、reflect.ValueOf()1.3、结构体反射 2、文件操作2.1、os.Open()打开文件2.2、方式一&#xff1a;使用Read()读取文件2.3、方式二&#xff1a;bufio读取文件2.4、方式三&#xff1a;os.ReadFile读取2.5、写…...

tauri项目,如何在rust端读取电脑环境变量

如果想在前端通过调用来获取环境变量的值&#xff0c;可以通过标准的依赖&#xff1a; std::env::var(name).ok() 想在前端通过调用来获取&#xff0c;可以写一个command函数&#xff1a; #[tauri::command] pub fn get_env_var(name: String) -> Result<String, Stri…...