当前位置: 首页 > news >正文

Redis 性能优化选择:Pika 的配置与使用详解

引言

在我们日常开发中 redis是我们开发业务场景中不可缺少的部分。Redis 凭借其内存存储和快速响应的特点,广泛应用于缓存、消息队列等各种业务场景。然而,随着数据量的不断增长,单节点的 Redis 因为内存限制和并发能力的局限,逐渐难以支撑高并发的请求。为了解决这些问题,我们通常会采用 搭建Redis 集群方案来解决高并发下的限制问题。然而,Redis 集群的部署往往需要更高的资源投入,巨大的内存需求和运维成本带来了不小的压力。除此之外,集群模式下的数据分片和一致性问题,也让系统设计的复杂度大大增加。

在这种高并发、大流量的业务场景下,我们是否能够在追求 Redis 高性能的同时,找到更经济高效的大数据解决方案呢?除了 Redis 集群方案外,今天我将介绍一种可以替代 Redis 集群的方案,也是我在以往开发中广泛使用的一种数据结构——Pika。Pika 在兼容 Redis API 的基础上,将数据存储在磁盘上,突破了内存限制,尤其适合大数据存储和高并发访问的需求。


什么是 Pika?

Pika 是一种兼容 Redis 协议的高效存储引擎,设计初衷就是为了解决 Redis 在大数据场景下因内存限制而带来的瓶颈问题。与 Redis 将数据存储在内存中的方式不同,Pika 将数据存储在磁盘上,从而有效扩展存储容量,适应大规模数据的需求。当 Redis 的内存使用量超过 16 GiB 时,会面临多种限制,如内存容量受限、单线程阻塞、启动恢复时间长、内存硬件成本高、缓冲区容易填满、一主多从故障时的切换成本高等。Pika 的出现并非为了替代 Redis,而是为了补充 Redis,以便在大数据场景下依然保持高性能。Pika 力求完全遵守 Redis 协议,继承 Redis 便捷的运维设计,同时通过持久化存储来突破 Redis 在数据量巨大时内存容量不足的瓶颈。此外,Pika 支持通过 slaveof 命令进行主从模式配置,支持全量和增量数据同步,方便在大数据和高可用场景下的灵活扩展。

Pika 的兼容性

Pika 兼容 Redis 中的 stringhashlistzsetset 五大核心数据类型,能够支持大部分与之相关的操作接口(兼容详情可查阅官方文档),实现了几乎所有 Redis 的基本操作需求。这意味着,现有的 Redis 客户端和命令都可以无缝迁移到 Pika 上使用,无需额外学习新的命令或语法。

Pika 的主从备份能力

与 Redis 一样,Pika 支持通过 slaveof 命令进行主从复制,提供可靠的备份和高可用性支持。同时,Pika 实现了全同步和部分同步机制,能够在数据同步中做到既灵活又高效,确保数据一致性和稳定性。这样,Pika 既保留了 Redis 数据复制的优势,又在容量上扩展了存储空间,可以在不更改代码的前提下快速接入生产环境。

为什么选择 Pika?

Pika 提供了与 Redis 一致的使用体验,且不需要额外的学习和开发成本。相较于 Redis,Pika 的优势体现在以下几方面:

  1. 更大的存储容量:Pika 通过磁盘存储解决了 Redis 的内存瓶颈问题,适合大规模数据场景。
  2. 无缝替换:Pika 兼容 Redis 绝大多数核心命令,因此在功能实现和操作上与 Redis 几乎无异,用户不必更改现有代码或熟悉新的命令,即可将 Pika 集成到现有系统中。
  3. 高可用性和备份支持:Pika 支持主从复制、全同步和部分同步,确保数据可靠性和高并发访问。

Pika 的适用场景

Pika 的设计非常适合以下几种高容量、高并发的数据场景:

  1. 大数据量缓存:对于数据规模庞大的应用,比如实时数据处理、日志收集和分析场景,Pika 的磁盘存储使它能轻松应对 TB 级数据,不再受限于内存容量。适用于金融、广告、物联网等需要存储大量实时数据的行业。
  2. 高并发访问场景:在流量密集型业务中,如电商、游戏和社交网络,Pika 能够支持高并发访问需求,与 Redis 一样实现快速的数据读写,但在资源消耗上更经济。
  3. 长时间数据存储:在日志存储、历史数据存储等业务中,数据需要长时间保留,但访问频率相对较低。Pika 的磁盘持久化存储方式为此类场景提供了低成本的替代方案,不会因数据量增加而导致内存压力上升。
  4. 分布式集群环境:对于需要高可用性的数据集群应用,Pika 的主从复制和同步功能使其可以在分布式环境中稳定运行,支持多节点备份和容灾切换,确保数据的高可靠性和一致性。

Pika使用用户

在这里插入图片描述

Pika 已被各大公司广泛采用,用于内部部署,证明了其可扩展性和可靠性。一些值得注意的使用实例包括:

  • 360公司:内部部署,规模10000+实例,单机数据量1.8TB。
  • 微博:内部部署,有10000+个实例。
  • 喜马拉雅(Xcache) :6000+实例,海量数据超过120TB。
  • 个推 公司:内部部署,300+实例,累计数据量超过30TB。

此外,迅雷、小米、知乎、好未来、快手、搜狐、美团、脉脉等公司也在使用 Pika。有关完整用户列表,可以参考 Pika 项目提供的官方列表。

这些在不同公司和行业的部署凸显了 Pika 在处理大规模、大容量数据存储需求方面的适应性和有效性。


接下来,我将展示如何安装 Pika,并进行简单的使用示例,以便快速上手并体验 Pika 的性能。

安装之前我们先看下官方给的安装示例:安装示例

我按照官方的安装示例 安装的是v4.0.1最新版本及之前版本。但是我一直未make或build成功。不知道是不是我自己环境的问题。

本文章采用下载安装包的形式来安装
  1. 首先我们去版本库下载对应版本的安装包(我选择是v3.3.0)

    在这里插入图片描述

  2. 将安装包上传到 /usr/local/pika 目录中,便于管理:

    sudo mkdir -p /usr/local/pika
    
  3. 然后解压该安装包

    sudo tar -xvf  pika-linux-x86_64-v3.3.0.tar.bz2 
    

    在这里插入图片描述

  4. 解压完成后会生成一个output文件夹,接下来我们执行命令启动

       ./output/bin/pika -c ./output/conf/pika.confb
    
  5. 我第一次启动报错了 报错如下:

    在这里插入图片描述

    • 这个错误提示主要有两个原因:1. Rsync 失败pika_rsync_service.cc:48 报错提示无法启动 rsync 服务,可能是 rsync 没有安装或者路径配置有问题。
      2. 端口绑定失败:提示 bind port 10221 failed,表示 Pika 无法绑定端口 10221,可能是端口被占用,或者当前用户权限不足。

    • Pika 使用 rsync 进行数据同步,请确保系统已安装 rsync

      sudo yum install -y rsync
      

      安装完成后,重新尝试启动 Pika。

    • 使用以下命令检查是否有其他进程占用了 10221 端口:

      sudo lsof -i :10221
      

      如果有其他进程占用端口,可以尝试停止占用端口的进程,或者更改 Pika 的端口配置。

解决上面问题后 我尝试重新启动,可以看到已经成功启动:

在这里插入图片描述

启动成功后我们另开一个窗口来测试操作简单命令:

在这里插入图片描述


我们来大概看下安装的Pika配置文件 在output/conf下的pika.conf:

# Pika port
port : 9221  # Pika 监听的端口# Thread Number
thread-num : 1  # 用于处理客户端请求的工作线程数# Thread Pool Size
thread-pool-size : 12  # 线程池大小,用于处理并发任务# Sync Thread Number
sync-thread-num : 6  # 用于主从同步的线程数# Pika log path
log-path : ./log/  # 日志文件的存储路径# Pika db path
db-path : ./db/  # 数据库文件的存储路径# Pika write-buffer-size
write-buffer-size : 268435456  # 写缓冲区大小,单位为字节(256MB)# Pika timeout
timeout : 60  # 客户端连接空闲超时时间,单位为秒# Requirepass
requirepass :  # 设置管理员密码,用于验证高权限操作# Masterauth
masterauth :  # 从节点连接主节点时的认证密码# Userpass
userpass :  # 普通用户连接的密码# User Blacklist
userblacklist :  # 黑名单用户列表,拒绝指定用户访问# Pika instance mode [classic | sharding]
instance-mode : classic  # Pika 的实例模式:classic 为多数据库模式,sharding 为分片模式# Set the number of databases. Limited in [1, 8]
databases : 1  # 数据库数量,仅在 classic 模式下有效# default slot number each table in sharding mode
default-slot-num : 1024  # 每张表的分片数量,仅在 sharding 模式下有效# replication num defines followers in a single raft group, limited in [0, 4]
replication-num : 0  # Raft 组中的从节点数量# consensus level defines confirms before commit to client
consensus-level : 0  # 主节点提交前需要的确认数量,用于 Raft 一致性协议# Dump Prefix
dump-prefix :  # 导出文件的前缀,用于数据持久化文件命名# daemonize  [yes | no]
#daemonize : yes  # 是否以守护进程方式运行(后台运行)# Dump Path
dump-path : ./dump/  # 数据导出路径# Expire-dump-days
dump-expire : 0  # 数据导出的过期天数(0 表示不过期)# pidfile Path
pidfile : ./pika.pid  # Pika 进程 ID 文件路径# Max Connection
maxclients : 20000  # 最大客户端连接数# the per file size of sst to compact, default is 20M
target-file-size-base : 20971520  # 每个 SST 文件的目标大小(20MB)# Expire-logs-days
expire-logs-days : 7  # 日志文件的过期天数# Expire-logs-nums
expire-logs-nums : 10  # 日志文件的最大数量# Root-connection-num
root-connection-num : 2  # root 用户的最大连接数# Slowlog-write-errorlog
slowlog-write-errorlog : no  # 慢查询日志是否写入错误日志文件# Slowlog-log-slower-than
slowlog-log-slower-than : 10000  # 慢查询记录的时间阈值,单位为微秒# Slowlog-max-len
slowlog-max-len : 128  # 慢查询日志的最大条数# Pika db sync path
db-sync-path : ./dbsync/  # 数据同步文件的存储路径# db sync speed(MB) max is set to 1024MB, min is set to 0
db-sync-speed : -1  # 主从同步的最大速度,单位为 MB/s,-1 表示无限制# The slave priority
slave-priority : 100  # 从节点的优先级# network interface
#network-interface : eth1  # 网络接口(可以指定特定的网卡)# replication
#slaveof : master-ip:master-port  # 设置为从节点并指定主节点地址和端口# CronTask, e.g., 02-04/60 for compaction between 2-4am every day
#compact-cron : 3/02-04/60  # 压缩任务计划:在每周三的 2-4 点进行压缩# Compact-interval, e.g., 6/60 checks compaction every 6 hours
#compact-interval :  # 压缩间隔,单位为小时。比 compact-cron 优先# sync window size for binlog between master and slave, default is 9000
sync-window-size : 9000  # 主从同步的 binlog 窗口大小# max connection read buffer size, default is 256MB
max-conn-rbuf-size : 268435456  # 最大读取缓冲区大小###################
## Critical Settings
###################
# write_binlog  [yes | no]
write-binlog : yes  # 是否开启 binlog 日志记录# binlog file size: default is 100M,  limited in [1K, 2G]
binlog-file-size : 104857600  # binlog 文件大小限制(100MB)# Use cache to store up to 'max-cache-statistic-keys' keys
max-cache-statistic-keys : 0  # 缓存的统计键的最大数量,0 表示关闭此功能# Trigger small compaction after deleting/overwriting keys
small-compaction-threshold : 5000  # 触发小压缩的操作次数阈值# Flush triggered if all live memtables exceed this limit
max-write-buffer-size : 10737418240  # 所有 memtables 的总内存大小上限(10GB)# Limit some command response size
max-client-response-size : 1073741824  # 限制响应大小的最大值(1GB)# Compression type supported [snappy, zlib, lz4, zstd]
compression : snappy  # 数据压缩类型# max-background-flushes: default is 1, limited in [1, 4]
max-background-flushes : 1  # 后台刷新任务的最大数量# max-background-compactions: default is 2, limited in [1, 8]
max-background-compactions : 2  # 后台压缩任务的最大数量# Maximum cached open file descriptors
max-cache-files : 5000  # 缓存的最大打开文件描述符数量# max_bytes_for_level_multiplier: default is 10, can change to 5
max-bytes-for-level-multiplier : 10  # RocksDB 层次的最大字节数乘数# BlockBasedTable block_size, default 4k
# block-size: 4096  # 块表的块大小(4KB)# block LRU cache, default 8M, 0 to disable
# block-cache: 8388608  # LRU 块缓存大小(8MB)# whether the block cache is shared among RocksDB instances
# share-block-cache: no  # 是否在多个 RocksDB 实例之间共享块缓存# whether index and filter blocks are in block cache
# cache-index-and-filter-blocks: no  # 是否将索引和过滤块放入块缓存# bloomfilter of the last level will not be built if set to yes
# optimize-filters-for-hits: no  # 是否优化最后一层的布隆过滤器# Enables dynamic levels target size for compaction
# level-compaction-dynamic-level-bytes: no  # 是否启用动态级别的压缩目标大小

根据配置文件的配置项可以根据自己的需求更改


在每次启动时手动执行启动命令既麻烦又不便于管理。为此,我们可以通过 Systemd 配置一个服务,使 Pika 开机自启并便于系统控制,提升管理效率。

配置启动服务

  1. 创建 Pika 系统用户

    为了提高安全性,创建一个专用的系统用户和用户组来运行 Pika(在/usr/local/pika下执行):

    sudo groupadd --system pika
    sudo useradd -M -s /sbin/nologin -g pika -d /usr/local/pika pika
    
  2. 设置文件拥有者

    chown -R pika:pika output
    
  3. 配置 Pika 作为 Systemd 服务

    /usr/lib/systemd/system 目录下创建 pika.service 文件:

    cat > /usr/lib/systemd/system/pika.service <<EOF[Unit]
    Description=pika server
    Requires=network.target
    After=network.target[Service]
    User=pika
    Group=pika
    Type=forking
    WorkingDirectory=/usr/local/pika/output
    ExecStart=/usr/local/pika/output/bin/pika -c /usr/local/pika/output/conf/pika.conf
    Restart=always[Install]
    WantedBy=multi-user.target
    EOF
    

    确保 WorkingDirectory 路径是有效的目录,并且已经在系统中正确创建。根据您之前的路径配置,将 WorkingDirectory 修改为实际存在的路径,例如:WorkingDirectory=/usr/local/pika/pika-v4.0.1
    ExecStart=/usr/local/pika/pika-v4.0.1-alpha/output/pika -c /usr/local/pika/pika-v4.0.1-alpha/conf/pika.conf

  4. 增加文件描述符限制

    为确保高并发场景下的稳定性,增加文件描述符的限制:

  • 创建 pika.service.d 目录:

    sudo mkdir -p /etc/systemd/system/pika.service.d
    
  • 在该目录下创建 limit.conf 文件:

    sudo cat > /etc/systemd/system/pika.service.d/limit.conf <<EOF 
    [Service] 
    LimitNOFILE=65536 
    EOF
    
  1. 启动和管理 Pika 服务

    完成配置后,可以使用以下命令来管理 Pika:

    # 重新加载 systemd 配置文件
    sudo systemctl daemon-reload # 启动 Pika 服务 
    sudo systemctl start pika# 设置 Pika 开机启动 
    sudo systemctl enable pika # 检查服务状态 
    sudo systemctl status pika
    

通过以上步骤,Pika 已成功安装并配置为 systemd 服务,支持自动启动、停止和重启管理,方便在生产环境中使用。这样不仅简化了管理,还提高了服务的稳定性。


注意事项

在安装和配置 Pika 后,以下几点是需要特别注意的,以便更好地理解 Pika 的使用场景和性能表现:

  1. 线程模型
    Pika 是多线程设计,不同于 Redis 的单线程模型,这使得 Pika 能在大多数多核 CPU 环境下有效地处理更多的并发请求。这种设计更适合于大量数据的场景,尤其是在持久化存储需求强烈的场合。

  2. 适用场景

    • 大数据、高容量场景:Pika 在大数据和持久化存储的场景下更具优势。例如,当 Redis 内存超出 16GB 后可能出现瓶颈,Pika 则通过将数据存储在磁盘上而不依赖于内存,有效解决了存储容量的限制问题。
    • 写密集型操作:在写密集型操作时,Pika 的多线程设计使其在高并发写入场景中表现更优。
  3. 性能限制
    虽然 Pika 在某些场景下优于 Redis,但它并非在所有情况下都优于 Redis,也不能完全取代 Redis。在高性能内存操作和极低延迟需求的场景下,例如高速缓存、实时性极高的操作,Redis 的内存操作速度更具优势。

  4. 主从同步和故障恢复
    Pika 支持通过 slaveof 命令配置主从关系,但其同步机制依赖于磁盘 I/O,可能会导致与 Redis 相比稍微较慢的同步速度。对于高频数据变更或对数据实时性要求较高的场景,可能仍需要 Redis 提供更快的响应。

  5. 存储开销
    因为 Pika 依赖磁盘存储,所以需要保证存储空间充足并定期清理过期数据。过大的数据集可能会导致磁盘 I/O 增加,从而对系统的整体性能产生影响。

  6. 选择依据
    Pika 并不是 Redis 的完全替代品。在决定使用 Pika 或 Redis 时,最好结合业务场景:如果数据量较小且关注内存操作的速度,Redis 更合适;而在持久化需求高、数据量大或关注磁盘存储扩展性的场景下,Pika 更适用。


最后

Pika 作为一种兼容 Redis 协议的高效存储引擎,在大数据和持久化存储需求的业务场景中,为 Redis 用户提供了一个强有力的补充方案。Pika 通过将数据存储在磁盘上,有效突破了 Redis 在内存容量上的限制,同时保持了 Redis 的高效操作体验和简便的管理特性。得益于多线程设计,Pika 能在写密集和大容量场景中表现优异,尤其适合那些对数据持久化、扩展性要求较高的场合。

然而,Pika 并非 Redis 的完全替代品。在需要极低延迟、以缓存为核心的场景中,Redis 仍然具备不可替代的优势。因此,选择 Pika 或 Redis 需要结合具体的业务需求,权衡各自的优缺点。总体而言,Pika 在特定的应用场景下能够发挥重要作用,是 Redis 在大数据场景中的有益补充。希望通过本次配置和使用指南,大家能够更好地理解 Pika 的特性和适用性,为项目需求提供更高效的解决方案。

相关文章:

Redis 性能优化选择:Pika 的配置与使用详解

引言 在我们日常开发中 redis是我们开发业务场景中不可缺少的部分。Redis 凭借其内存存储和快速响应的特点&#xff0c;广泛应用于缓存、消息队列等各种业务场景。然而&#xff0c;随着数据量的不断增长&#xff0c;单节点的 Redis 因为内存限制和并发能力的局限&#xff0c;逐…...

【某农业大学计算机网络实验报告】实验三 IP数据报发送和转发流程

实验目的&#xff1a; &#xff08;1&#xff09;掌握基本的网络配置方法。 &#xff08;2&#xff09;观察 IP 数据报的发送和转发流程&#xff0c;掌握 IP 转发分组的原理。 实验器材&#xff1a; 一台Windows操作系统的PC机。 实验准备&#xff1a; 1&#xff0e;配置…...

Android13 添加运行时权限

在一些场景下&#xff0c;需要给app 添加运行时权限&#xff0c;这样就不需要在使用的时候再去点击授权。 直接上代码&#xff1a; --- a/services/core/java/com/android/server/pm/permission/DefaultPermissionGrantPolicy.javab/services/core/java/com/android/server/pm…...

官方操刀占用仅6G,Win 11 LTSC详细安装、优化教程来了

前段时间微软发布 Win 11 年度重磅更新 24H2&#xff0c;顺便也带来了备受期待的 Win 11 2024 官方精简 LTSC&#xff08;老坛酸菜&#xff09;版。 Win 11 重磅更新发布&#xff0c;老坛酸菜版成了配角&#xff01; 简单来说&#xff0c;Win 11 LTSC 是微软针对企业用户推出…...

【论文精读】RELIEF: Reinforcement Learning Empowered Graph Feature Prompt Tuning

RELIEF: Reinforcement Learning Empowered Graph Feature Prompt Tuning 前言AbstractMotivationSolutionRELIEFIncorporating Feature Prompts as MDPAction SpaceState TransitionReward Function Policy Network ArchitectureDiscrete ActorContinuous ActorCritic Overall…...

2023-06 GESP C++三级试卷

2023-06 GESP C三级试卷 &#xff08;满分&#xff1a;100 分 考试时间&#xff1a;90 分钟&#xff09; PDF试卷及答案回复:GESPC2023063 一、单选题&#xff08;每题 2 分&#xff0c;共 30 分&#xff09; 1 高级语言编写的程序需要经过以下&#xff08; &#xff09;操…...

Maven--简略

简介 Apache旗下的一款开源项目&#xff0c;用来进行项目构建&#xff0c;帮助开发者管理项目中的jar及jar包之间的依赖&#xff0c;还拥有项目编译、测试、打包的功能。 管理方式 统一建立一个jar仓库&#xff0c;把jar上传至统一的仓库&#xff0c;使用时&#xff0c;配置…...

leetcode 刷题day44动态规划Part13( 647. 回文子串、516.最长回文子序列)

647. 回文子串 动规五部曲&#xff1a; 1、确定dp数组&#xff08;dp table&#xff09;以及下标的含义 按照之前做题的惯性&#xff0c;定义dp数组的时候很自然就会想题目求什么&#xff0c;就如何定义dp数组。但是对于本题来说&#xff0c;这样定义很难得到递推关系&#x…...

华为OD机试真题---关联子串

华为OD机试中的“关联子串”题目是一个考察字符串处理和算法理解的经典问题。以下是对该题目的详细解析&#xff1a; 一、题目描述 给定两个字符串str1 和 str2&#xff0c;如果字符串 str1 中的字符&#xff0c; 经过排列组合后的字符串中只要有一个是 str2 的子串&#xff…...

【OpenAI】第二节(Token)什么是Token?如何计算ChatGPT的Token?

深入解析&#xff1a;GPT如何计算Token数&#xff1f;让你轻松掌握自然语言处理的核心概念&#xff01;&#x1f680; 在当今的人工智能领域&#xff0c;GPT&#xff08;Generative Pre-trained Transformer&#xff09;无疑是最受关注的技术之一。无论是在文本生成、对话系统…...

GraphRAG + Ollama + Groq 构建知识库 续篇 利用neo4j显示知识库

GraphRAG Ollama Groq 构建知识库 在上一篇文章中&#xff0c;我们详细介绍了如何创建一个知识库。尽管知识库已经建立&#xff0c;但其内容的可视化展示尚未实现。我们无法直接看到知识库中的数据&#xff0c;也就无法判断这些数据是否符合我们的预期。为了解决这个问题&…...

工业以太网之战:EtherCAT是如何杀出重围的?

前言 EtherCAT 是一种开放的实时工业以太网协议&#xff0c;由德国倍福公司开发并在 2003 年 4 月的汉诺威工业博览会上首次亮相&#xff0c;目前由 EtherCAT 技术协会&#xff08;ETG&#xff09;进行维护和推广。经过 21 年的不断发展&#xff0c;EtherCAT 显示出极强的生命…...

轻量级可视化数据分析报表,分组汇总表!

什么是可视化分组汇总表&#xff1f; 可视化分组汇总表&#xff0c;是一种结合了数据分组、聚合计算与视觉呈现功能的数据分析展示功能。它能够按照指定的维度&#xff08;如时间、地区、产品类型等&#xff09;对数据进行分组&#xff0c;还能自动计算各组的统计指标&#xf…...

初始Python篇(4)—— 元组、字典

找往期文章包括但不限于本期文章中不懂的知识点&#xff1a; 个人主页&#xff1a;我要学编程(ಥ_ಥ)-CSDN博客 所属专栏&#xff1a; Python 目录 元组 相关概念 元组的创建与删除 元组的遍历 元组生成式 字典 相关概念 字典的创建与删除 字典的遍历与访问 字典…...

C#中正则表达式

在C#中&#xff0c;正则表达式由 System.Text.RegularExpressions 命名空间提供&#xff0c;可以使用 Regex 类来处理正则表达式。以下是一些常见的用法及示例。 C# 中使用正则表达式的步骤&#xff1a; 引入命名空间&#xff1a; using System.Text.RegularExpressions; 创…...

【python写一个带有界面的计算器】

python写一个带有界面的计算器 为了创建一个带有图形用户界面&#xff08;GUI&#xff09;的计算器&#xff0c;我们可以使用Python的tkinter库。tkinter是Python的标准GUI库&#xff0c;它允许我们创建窗口、按钮、文本框等GUI元素。 下面是一个简单的带有GUI的计算器示例&a…...

K230获取单摄像头的 3 个通道图像并显示在 HDMI 显示器上

本示例打开摄像头&#xff0c;获取 3 个通道的图像并显示在 HDMI 显示器上。通道 0 采集 1080P 图像&#xff0c;通道 1 和通道 2 采集 VGA 分辨率的图像并叠加在通道 0 的图像上。 # Camera 示例 import time import os import sysfrom media.sensor import * from media.dis…...

nginx中的HTTP 负载均衡

HTTP 负载均衡&#xff1a;如何实现多台服务器的高效分发 为了让流量均匀分配到两台或多台 HTTP 服务器上&#xff0c;我们可以通过 NGINX 的 upstream 代码块实现负载均衡。 方法 在 NGINX 的 HTTP 模块内使用 upstream 代码块对 HTTP 服务器实施负载均衡&#xff1a; upstr…...

package.json 里的 dependencies和devDependencies区别

dependencies&#xff08;依赖的意思&#xff09;&#xff1a; 通过 --save 安装&#xff0c;是需要发布到生产环境的。 比如项目中使用react&#xff0c;那么没有这个包的依赖就会报错&#xff0c;因此把依赖写入dependencies npm install <package-name>// 缩写 np…...

【功能安全】HARA分析中的SEC如何确认

目录 01 SEC介绍 02 SEC怎么定义 📖 推荐阅读 01 SEC介绍 SEC定义 S代表safety,E指的是Exposure,C指的是Controllability ASIL等级就是基于SEC三个参数确定下来的。 计算公式:10=D,9=C,8=B,7=A,<7=QM 举例:S3-C2-E4,即3+2+4=9,ASIL C 02 SEC怎么定义 Safe…...

阿里云Docker镜像源安装Docker的步骤

阿里云 Docker 镜像源安装 Docker 的步骤&#xff1a; 1. 更新包管理器&#xff1a; sudo apt update 2. 安装 Docker 的依赖包&#xff1a; sudo apt install apt-transport-https ca-certificates curl gnupg lsb-release 3. 添加阿里云 Docker 镜像源 GP…...

得一微全资子公司硅格半导体携手广东工业大学,荣获省科学技术奖一等奖

10月17日&#xff0c;全省科技大会在广州召开&#xff0c;会上颁发了2023年度广东省科学技术奖。得一微电子旗下全资子公司深圳市硅格半导体有限公司&#xff08;以下简称“硅格半导体”&#xff09;与广东工业大学&#xff08;以下简称&#xff1a;广工大&#xff09;携手多家…...

@SneakyThrows不合理使用,是真的坑

public static void main(String[] args) {int a 1;int b 2;String result getResult(a, b);System.out.println(result);}SneakyThrowspublic static String getResult(Integer a,Integer b){if (a.equals(b)){return "成功&#xff01;";}else{throw new Interru…...

怎么把ppt页面切换为竖页?首推使用这个在线ppt工具!

熟悉ppt的朋友都知道&#xff0c;最常见的ppt演示文稿为横版样式&#xff0c;且一旦确定了ppt的版式&#xff0c;后续所有页面会保持相同的大小&#xff0c;但有时横版不能满足我们需求&#xff0c;想单独把其中一页或多页变为竖页&#xff0c;Office Powerpoint就无能为力了。…...

【JavaEE】——自定义协议方案、UDP协议

阿华代码&#xff0c;不是逆风&#xff0c;就是我疯 你们的点赞收藏是我前进最大的动力&#xff01;&#xff01; 希望本文内容能够帮助到你&#xff01;&#xff01; 目录 一&#xff1a;自定义协议 1&#xff1a;自定义协议 &#xff08;1&#xff09;交互哪些信息 &…...

python爬虫快速入门之---Scrapy 从入门到包吃包住

python爬虫快速入门之—Scrapy 从入门到包吃包住 文章目录 python爬虫快速入门之---Scrapy 从入门到包吃包住一、scrapy简介1.1、scrapy是什么?1.2、Scrapy 的特点1.3、Scrapy 的主要组件1.4、Scrapy 工作流程1.5、scrapy的安装 二、scrapy项目快速入门2.1、scrapy项目快速创建…...

【Photoshop——肤色变白——曲线】

1. 三通道曲线原理 在使用RGB曲线调整肤色时&#xff0c;你可以通过调整红、绿、蓝三个通道的曲线来实现黄皮肤到白皮肤的转变。 黄皮肤通常含有较多的红色和黄色。通过减少这些颜色的量&#xff0c;可以使肤色看起来更白。 具体步骤如下&#xff1a; 打开图像并创建曲线调…...

[python]从零开始的API调用教程

一、API是什么&#xff1f; API即应用程序编程接口&#xff0c;是一组定义了不同软件系统或组件之间如何交互的规则和协议。API为开发者提供了一种简化的方式&#xff0c;通过预定义的函数或方法&#xff0c;来使用某个软件、库、操作系统或硬件的功能&#xff0c;而不需要深入…...

FFmpeg 怎样根据图片和文本生成视频

使用FFmpeg根据图片和文本生成视频&#xff0c;你可以使用image2过滤器来处理图片&#xff0c;并使用subtitles过滤器来添加文本。以下是一个基本的命令行示例&#xff0c;它将图片转换为视频&#xff0c;并将文本作为字幕叠加&#xff1a; ffmpeg -loop 1 -i image.jpg -vf &…...

paddlepaddle显存未正常释放

NVIDIA GPU 显存未正常释放 问题描述 paddlepaddle 训练过程出现问题中断等导致GPU显存没有释放。 情况1: 使用nvidia-smi -l查看显存占用情况&#xff0c;输出结果中没有显示PID,但是有显存占用。 解决方法 使用killall python 直接kill掉所有python进程。假如运行此命…...