什么是凸二次规划问题
我们从凸二次规划的基本概念出发,然后解释它与支持向量机的关系。
一、凸二次规划问题的详细介绍
凸二次规划问题是优化问题的一类,目标是最小化一个凸的二次函数,受一组线性约束的限制。凸二次规划是一类特殊的二次规划问题,其中目标函数是凸的。凸函数意味着在函数的任何两点之间,函数的值总是在这两点连接的线段之下,这保证了有唯一的全局最优解。
凸二次规划问题的通用形式
min 1 2 x T Q x + c T x \min \quad \frac{1}{2} \mathbf{x}^T Q \mathbf{x} + \mathbf{c}^T \mathbf{x} min21xTQx+cTx
其中:
- x \mathbf{x} x 是决策变量向量,需要优化的目标。
- Q Q Q 是对称的正定矩阵,定义了二次项。如果 Q Q Q 是正定的(即 y T Q y > 0 \mathbf{y}^T Q \mathbf{y} > 0 yTQy>0 对于任何 y ≠ 0 \mathbf{y} \neq 0 y=0),则优化问题是凸的。
- c \mathbf{c} c 是线性项的系数向量。
目标是最小化上述二次函数。
线性约束
除了目标函数外,凸二次规划问题还受到一些线性约束的限制。约束条件通常可以有两类:
-
不等式约束:
A x ≤ b A \mathbf{x} \leq \mathbf{b} Ax≤b其中 A A A 是矩阵, b \mathbf{b} b 是约束向量,约束条件要求某些线性组合不能超过某个值。
-
等式约束:
E x = d E \mathbf{x} = \mathbf{d} Ex=d其中 E E E 是矩阵, d \mathbf{d} d 是约束向量,表示某些线性组合必须等于某个值。
解决凸二次规划问题的目标是找到最优的 x \mathbf{x} x,使得目标函数值最小化,并满足这些约束条件。
二、凸二次规划在支持向量机中的应用
SVM 中的目标:最大化间隔
支持向量机的核心思想是找到一个最佳的分类超平面,使得不同类别的数据点被最大间隔地分开。我们希望找到这样的超平面:
w T x + b = 0 \mathbf{w}^T \mathbf{x} + b = 0 wTx+b=0
其中 w \mathbf{w} w 是法向量, b b b 是偏置项。
在SVM中,我们要最大化分类间隔,即最小化超平面法向量 w \mathbf{w} w 的范数 ∥ w ∥ 2 \|\mathbf{w}\|^2 ∥w∥2。这个过程可以转化为一个优化问题。
软间隔支持向量机的目标函数
在软间隔 SVM 中,我们允许一些数据点有一定的误分类,但同时我们会引入“松弛变量” ξ i \xi_i ξi 来表示每个样本的误分类程度。目标函数变成了:
min 1 2 ∥ w ∥ 2 + C ∑ i = 1 n ξ i \min \quad \frac{1}{2} \|\mathbf{w}\|^2 + C \sum_{i=1}^{n} \xi_i min21∥w∥2+Ci=1∑nξi
其中:
- 第一项 1 2 ∥ w ∥ 2 \frac{1}{2} \|\mathbf{w}\|^2 21∥w∥2 是希望最小化法向量的长度,从而最大化分类的间隔。
- 第二项 C ∑ i = 1 n ξ i C \sum_{i=1}^{n} \xi_i C∑i=1nξi 是用于控制误分类点的惩罚。 C C C 是一个正则化参数,平衡间隔最大化和误分类惩罚之间的权重。
约束条件
SVM 的分类结果还必须满足线性可分性约束(允许误差的情况下是软约束):
y i ( w T x i + b ) ≥ 1 − ξ i , ∀ i = 1 , 2 , … , n y_i (\mathbf{w}^T \mathbf{x}_i + b) \geq 1 - \xi_i, \quad \forall i = 1, 2, \ldots, n yi(wTxi+b)≥1−ξi,∀i=1,2,…,n
ξ i ≥ 0 , ∀ i \xi_i \geq 0, \quad \forall i ξi≥0,∀i
这意味着每个数据点 x i \mathbf{x}_i xi 的分类结果要满足其真实类别标签 y i y_i yi (为1或-1)所期望的约束,允许误差由 ξ i \xi_i ξi 控制。
二次规划形式
现在,我们可以看到 SVM 的优化问题已经转化为一个标准的凸二次规划问题:
min 1 2 w T w + C ∑ i = 1 n ξ i \min \quad \frac{1}{2} \mathbf{w}^T \mathbf{w} + C \sum_{i=1}^{n} \xi_i min21wTw+Ci=1∑nξi
subject to y i ( w T x i + b ) ≥ 1 − ξ i \text{subject to} \quad y_i (\mathbf{w}^T \mathbf{x}_i + b) \geq 1 - \xi_i subject toyi(wTxi+b)≥1−ξi
ξ i ≥ 0 , ∀ i \xi_i \geq 0, \quad \forall i ξi≥0,∀i
这里,目标函数有一个凸的二次项( 1 2 w T w \frac{1}{2} \mathbf{w}^T \mathbf{w} 21wTw ),同时伴随着一组线性约束,因此这是一个典型的凸二次规划问题。
三、求解凸二次规划问题
求解凸二次规划问题可以使用各种算法,包括:
- 拉格朗日乘子法:用于处理带有约束的优化问题。在 SVM 中,通过引入拉格朗日乘子,我们可以将原问题转化为其对偶问题,通过求解对偶问题来获得最优解。
- 内点法:是一类求解凸规划问题的高效算法。
- 序列最小优化算法(SMO):专门用于求解 SVM 中的二次规划问题,通过分解问题为多个较小的子问题来逐步优化。
在 SVM 中,拉格朗日对偶形式被广泛使用,它将原始问题的复杂度降低,使得问题可以更高效地求解。
总结
- 凸二次规划问题是指最小化一个二次函数(目标函数是凸的),受一组线性约束限制的优化问题。
- **支持向量机(SVM)**的目标是找到一个最大化分类间隔的超平面,这个问题可以通过凸二次规划的形式来解决。
- 二次项对应于优化超平面法向量的长度,而线性约束则确保数据点的分类结果符合要求。
相关文章:
什么是凸二次规划问题
我们从凸二次规划的基本概念出发,然后解释它与支持向量机的关系。 一、凸二次规划问题的详细介绍 凸二次规划问题是优化问题的一类,目标是最小化一个凸的二次函数,受一组线性约束的限制。凸二次规划是一类特殊的二次规划问题,其…...
解决 Elasticsearch cluster_block_exception 错误的终极指南
Elasticsearch 是一个功能强大的分布式搜索引擎,广泛应用于全文检索、实时分析等场景。 尽管如此,像任何复杂系统一样,它也会遇到一些运行问题,其中较为常见且影响较大的就是 cluster_block_exception 错误。 本文将深入解析这种错…...
QT sql驱动错误QMYSQL driver not loaded
引用文章QMYSQL driver not loaded 根据引用文章,到在编译QT mysql.pro的源码步骤时,构建没有报错,但是在对应的文件夹内没有找到编译好的dll文件,经过全电脑搜寻,找到在此文件夹内。 遇到同样错误的朋友可以找找QT安…...
数据驱动,漫途能耗管理系统打造高效节能新生态!
在我国能源消耗结构中,工业企业所占能耗比例相对较大。为实现碳达峰、碳中和目标,工厂需强化能效管理,减少能耗与成本。高效的能耗管理系统通过数据采集与分析,能实时监控工厂能源使用及报警情况,为节能提供数据。构建…...
PH47代码框架软件二次开发极简教程
1. 教程说明 本教程适用于对飞控及Stm32程序设计比较熟悉的二次开发者快速掌握PH47框架的使用要点。本教程仅对PH47框架中最主要的二次开发特性进行简要说明,建议与框架中\DevStudio\Algorithms\Controller_Demo.cpp(.h)示例代码配合学习。关于二次开发特性中的详细…...
SQL Server-导入和导出excel数据-注意事项
环境: win10,SQL Server 2008 R2 之前写过的放在这里: SqlServer_陆沙的博客-CSDN博客 https://blog.csdn.net/pxy7896/category_12704205.html 最近重启ASP.NET项目,在使用sql server导出和导入数据时遇到一些问题,特…...
Linux系统:配置Apache支持CGI(Ubuntu)
配置Apache支持CGI 根据以下步骤配置,实现Apache支持CGI 安装Apache: 可参照文章: Ubuntu安装Apache教程。执行以下命令,修改Apache2配置文件000-default.conf: sudo vim /etc/apache2/sites-enabled/000-default.con…...
qt 序列化和反序列化
序列化:QByteArray buffer; QBuffer bufferDevice(&buffer); bufferDevice.open(QIODevice::WriteOnly); QDataStream out(&bufferDevice); out.setVersion(QDataStream::Qt_5_13); 反序列化: void deserialize(const QByteArray &buffer) {…...
java实现文件变动监听
在文件的内容发生变动时,应用可以感知这种变种,并重新加载文件内容,更新应用内部缓存 实现 轮询:定时器Timer,ScheduledExecutorService 判断文件修改:根据java.io.File#lastModified获取文件的上次修改时…...
Maven的使用
1. Maven 简介 https://maven.apache.org/ Maven 是一个强大的项目管理和构建工具,广泛应用于 Java 项目中,旨在简化项目的依赖管理、构建、测试、部署等工作。Maven 主要通过定义 pom.xml(Project Object Model 文件)来管理项…...
C++开发进阶1:C++编程命名规范
进行C开发时最基础且最重要的是命名规范,掌握良好的命名规范能增加代码的可读性。 认识文件: .cpp:C 源文件. .h或.hpp:C 头文件 .tpp模板实现文件(如果模板定义和实现分开) .inl内联文件,…...
Android 图片相识度比较(pHash)
概述 在 Android 中,要比对两张 Bitmap 图片的相似度,常见的方法有基于像素差异、直方图比较、或者使用一些更高级的算法如 SSIM(结构相似性)和感知哈希(pHash)。 1. 基于像素的差异比较 可以逐像素比较…...
Gitlab 完全卸载–亲测可行
1、停止gitlab gitlab-ctl stop2.卸载gitlab(注意这里写的是gitlab-ce) rpm -e gitlab-ce 3、查看gitlab进程 ps aux | grep gitlab 4、杀掉第一个进程(就是带有好多.............的进程) 5、删除所有包含gitlab文件 find / …...
gitlab操作和管理
详细的说明下这几条指令: Git global setup git config --global user.name “” git config --global user.email “” Create a new repository git clone ssh://git12/letect.git cd vlm-event-secondary-detect git switch -c main touch README.md git add RE…...
ctfshow-web入门-反序列化(web254-web258)
目录 1、web254 2、web255 3、web256 4、web257 5、web258 1、web254 传入符合要求的用户名和密码即可: ?usernamexxxxxx&passwordxxxxxx 拿到 flag:ctfshow{e4795ccd-6bff-44b6-a15c-6c679d802e61} 2、web255 整体逻辑代码和上一道差不多 新…...
repo 命令大全详解(第十一篇 repo init)
repo forall 命令用于在指定的项目上执行给定的命令,非常适合批量操作。 参数分类及解释 基本参数 [<project>...]: 可选,指定要操作的项目。如果不指定,则对所有项目执行命令。 示例: repo forall my_project -c "git status&q…...
ComfyUI | 全新ComfyUI前端操作指南:提升你的工作速度!
随着WebUI基本停更,越来越多的AI创作者转向了ComfyUI。 ComfyUI最大的优势是简洁、高效、占用显存低,工作流模式虽然有一点入门难度,但一旦上手,操作非常舒适。 由于原Stable Diffusion团队的参与,ComfyUI的易用度也…...
nginx解决非人类使用http打开的443,解决网安漏扫时误扫443端口带来的问题
一、问题描述 正常访问https的站点时,使用网址https://www.baidu.com,但会有一种错误的访问请求http://www.baidu.com:443,一般都是非人类所为,如漏洞扫描工具,那么请求以后带来的后果是个错误页面 400 Bad Request T…...
黑马 | Reids | 基础篇
黑马reids基础篇 文章目录 黑马reids基础篇一.初始Redis1.1SQL 和 NoSql的区别1.1.1结构化和非结构化1.1.2关联和非关联1.1.3查询方式1.1.4 事务1.1.5总结 1.2 认识Redis1.3 Redis安装启动默认启动:后台启动:开机自启 1.4 Redis客户端1.4.1.Redis命令行客…...
SAP-换登录界面图片
SMW0 二、SM30 (将value值删除,登录图片恢复默认) 重新登录,更改成功。...
浏览器访问 AWS ECS 上部署的 Docker 容器(监听 80 端口)
✅ 一、ECS 服务配置 Dockerfile 确保监听 80 端口 EXPOSE 80 CMD ["nginx", "-g", "daemon off;"]或 EXPOSE 80 CMD ["python3", "-m", "http.server", "80"]任务定义(Task Definition&…...
深入剖析AI大模型:大模型时代的 Prompt 工程全解析
今天聊的内容,我认为是AI开发里面非常重要的内容。它在AI开发里无处不在,当你对 AI 助手说 "用李白的风格写一首关于人工智能的诗",或者让翻译模型 "将这段合同翻译成商务日语" 时,输入的这句话就是 Prompt。…...
【第二十一章 SDIO接口(SDIO)】
第二十一章 SDIO接口 目录 第二十一章 SDIO接口(SDIO) 1 SDIO 主要功能 2 SDIO 总线拓扑 3 SDIO 功能描述 3.1 SDIO 适配器 3.2 SDIOAHB 接口 4 卡功能描述 4.1 卡识别模式 4.2 卡复位 4.3 操作电压范围确认 4.4 卡识别过程 4.5 写数据块 4.6 读数据块 4.7 数据流…...
Unity | AmplifyShaderEditor插件基础(第七集:平面波动shader)
目录 一、👋🏻前言 二、😈sinx波动的基本原理 三、😈波动起来 1.sinx节点介绍 2.vertexPosition 3.集成Vector3 a.节点Append b.连起来 4.波动起来 a.波动的原理 b.时间节点 c.sinx的处理 四、🌊波动优化…...
C# 求圆面积的程序(Program to find area of a circle)
给定半径r,求圆的面积。圆的面积应精确到小数点后5位。 例子: 输入:r 5 输出:78.53982 解释:由于面积 PI * r * r 3.14159265358979323846 * 5 * 5 78.53982,因为我们只保留小数点后 5 位数字。 输…...
RabbitMQ入门4.1.0版本(基于java、SpringBoot操作)
RabbitMQ 一、RabbitMQ概述 RabbitMQ RabbitMQ最初由LShift和CohesiveFT于2007年开发,后来由Pivotal Software Inc.(现为VMware子公司)接管。RabbitMQ 是一个开源的消息代理和队列服务器,用 Erlang 语言编写。广泛应用于各种分布…...
Python 训练营打卡 Day 47
注意力热力图可视化 在day 46代码的基础上,对比不同卷积层热力图可视化的结果 import torch import torch.nn as nn import torch.optim as optim from torchvision import datasets, transforms from torch.utils.data import DataLoader import matplotlib.pypl…...
pycharm 设置环境出错
pycharm 设置环境出错 pycharm 新建项目,设置虚拟环境,出错 pycharm 出错 Cannot open Local Failed to start [powershell.exe, -NoExit, -ExecutionPolicy, Bypass, -File, C:\Program Files\JetBrains\PyCharm 2024.1.3\plugins\terminal\shell-int…...
Visual Studio Code 扩展
Visual Studio Code 扩展 change-case 大小写转换EmmyLua for VSCode 调试插件Bookmarks 书签 change-case 大小写转换 https://marketplace.visualstudio.com/items?itemNamewmaurer.change-case 选中单词后,命令 changeCase.commands 可预览转换效果 EmmyLua…...
CppCon 2015 学习:Reactive Stream Processing in Industrial IoT using DDS and Rx
“Reactive Stream Processing in Industrial IoT using DDS and Rx” 是指在工业物联网(IIoT)场景中,结合 DDS(Data Distribution Service) 和 Rx(Reactive Extensions) 技术,实现 …...
