使用Matplotlib绘制极轴散点图
散点图对于理解数据可视化中变量之间的相互作用至关重要。虽然散点图经常在笛卡尔坐标中创建,但我们也可以使用Matplotlib在极轴上创建散点图。有了这个功能,人们可以以创新的方式查看圆形或角形数据,例如周期性趋势或定向模式。在本文中,我们将介绍在Python中使用Matplotlib在极轴上绘制散点图的概念,包括如何创建它们,可视化它们和自定义它们。
极轴上的散点图
极坐标通过它们与参考点(原点)的距离以及与参考轴(通常为正x轴)形成的角度来表示平面中的点,与笛卡尔坐标相反,笛卡尔坐标使用x和y轴。
让我们考虑一个简单的例子,其中我们有一个包含方向数据的数据集,例如不同时间的风向。我们希望在极坐标图上将这些数据可视化为散点。
在极轴上可视化散点图
import matplotlib.pyplot as plt
import numpy as np# Generating sample data
theta = np.linspace(0, 2*np.pi, 100)
r = np.random.rand(100) # Random radius values
colors = np.random.rand(100) # Random colors# Creating the polar scatter plot
plt.figure(figsize=(8, 8))
ax = plt.subplot(111, polar=True)
ax.scatter(theta, r, c=colors, s=100, cmap='hsv', alpha=0.75)plt.title('Scatter Plot on Polar Axis', fontsize=15)
plt.show()
- 这段代码使用np.linspace创建了一个由100个等距角度组成的数组,这些角度在0到2π之间(整圆)。
- 这些角度表示极轴上数据点的位置。
- r使用np.random.rand生成一个0到1之间的100个随机数的数组,表示数据点沿径向轴距原点的距离。

数据点围绕极轴相当均匀地分散。θ值对应于点的角度,r值对应于点到原点的距离。距离原点较近的点用蓝色表示,而距离原点较远的点用红色表示。
极轴上的散点图,偏移原点
# Create the polar scatter plot with offset origin
plt.figure(figsize=(8, 8))
ax = plt.subplot(111, polar=True, theta_offset=np.pi/4) # Offset origin by pi/4
ax.scatter(theta, r, c=colors, s=100, cmap='hsv', alpha=0.75)plt.title('Scatter Plot on Polar Axis with Offset Origin', fontsize=15)
plt.show()
- 极轴上的散点图以圆形方式显示数据点。
- 偏移原点np.pi/4会移动绘图的起点,从而提供不同的参考。

使用极坐标绘制数据,其中每个点由角度(theta)和半径(r)表示。
- 图的原点偏移π/4弧度,这意味着零角度位于极轴上的45度标记处。
- 数据点由不同大小的彩色圆圈表示。
- 每个点的颜色由其色调、饱和度和值(HSV颜色模型)确定。
- 每个点的大小设置为100,透明度设置为0.75。
极轴上局限于扇形的散点图
# Create the polar scatter plot confined to a sector
plt.figure(figsize=(8, 8))
ax = plt.subplot(111, polar=True)
ax.scatter(theta, r, c=colors, s=100, cmap='hsv', alpha=0.75)# Confine scatter plot to a sector
ax.set_thetamin(45) # Minimum theta angle
ax.set_thetamax(135) # Maximum theta angleplt.title('Scatter Plot on Polar Axis Confined to a Sector', fontsize=15)
plt.show()
- 此代码创建极散点图并将其限制在指定的扇区(45到135度)。
- set_thetamin和set_thetamax函数控制散点图的角度范围,提供指定扇区内的聚焦视图。

- 数据点根据色调饱和度值(HSV)色图着色,即每个点的颜色对应于其角度(theta)值。数据点的大小也是变化的,较大的点对应于较大的r值。
- 该图被限制在45度和135度之间的扇区,因为数据仅与该角度范围相关。
总结
总之,学习如何在Python中使用Matplotlib在极轴上绘制散点图,为显示方向或圆形数据模式提供了一种革命性的方法。
相关文章:
使用Matplotlib绘制极轴散点图
散点图对于理解数据可视化中变量之间的相互作用至关重要。虽然散点图经常在笛卡尔坐标中创建,但我们也可以使用Matplotlib在极轴上创建散点图。有了这个功能,人们可以以创新的方式查看圆形或角形数据,例如周期性趋势或定向模式。在本文中&…...
Elasticsearch入门:增删改查详解与实用场景
引言 在我之前做社交架构设计的时候,我们有一项关键且必要的需求:需要存储并记录用户的所有聊天记录。这些记录不仅用于业务需求,也承担了风控审查的职责。因此,在架构设计中,我们需要考虑每天海量的聊天消息量&#…...
【AI论文精读6】SELF-RAG(23.10)附录
【AI论文解读】【AI知识点】【AI小项目】【AI战略思考】 P1,P2,P3 附录 A SELF-RAG 细节 A.1 反思标记(reflection tokens) 反思标记的定义 下面我们提供了反思标记类型和输出标记的详细定义。前三个方面将在每个片段…...
sql-labs靶场第十七关测试报告
目录 一、测试环境 1、系统环境 2、使用工具/软件 二、测试目的 三、操作过程 1、寻找注入点 2、注入数据库 ①寻找注入方法 ②爆库,查看数据库名称 ③爆表,查看security库的所有表 ④爆列,查看users表的所有列 ⑤成功获取用户名…...
面试官:MySQL一次到底插入多少条数据合适啊?
前言 大家好!在互联网时代,我们的每一个动作,无论是浏览网页、分享动态、点赞、购物或者搜索信息,都会在背后产生数据。这些数据,根据其用途和重要性,可能会被储存到不同的地方,其中最常见的存…...
WSL2 构建Ubuntu系统-轻量级AI运行环境
环境:Win11 软件:WSL2 安装环境:Ubuntu 22.04 检查电脑是否开启虚拟化 打开:任务管理器->性能->CPU CPU 开启虚拟化(通常默认是开启的,如果没有开启需要BIOS开启) 虚拟化设置࿰…...
什么是凸二次规划问题
我们从凸二次规划的基本概念出发,然后解释它与支持向量机的关系。 一、凸二次规划问题的详细介绍 凸二次规划问题是优化问题的一类,目标是最小化一个凸的二次函数,受一组线性约束的限制。凸二次规划是一类特殊的二次规划问题,其…...
解决 Elasticsearch cluster_block_exception 错误的终极指南
Elasticsearch 是一个功能强大的分布式搜索引擎,广泛应用于全文检索、实时分析等场景。 尽管如此,像任何复杂系统一样,它也会遇到一些运行问题,其中较为常见且影响较大的就是 cluster_block_exception 错误。 本文将深入解析这种错…...
QT sql驱动错误QMYSQL driver not loaded
引用文章QMYSQL driver not loaded 根据引用文章,到在编译QT mysql.pro的源码步骤时,构建没有报错,但是在对应的文件夹内没有找到编译好的dll文件,经过全电脑搜寻,找到在此文件夹内。 遇到同样错误的朋友可以找找QT安…...
数据驱动,漫途能耗管理系统打造高效节能新生态!
在我国能源消耗结构中,工业企业所占能耗比例相对较大。为实现碳达峰、碳中和目标,工厂需强化能效管理,减少能耗与成本。高效的能耗管理系统通过数据采集与分析,能实时监控工厂能源使用及报警情况,为节能提供数据。构建…...
PH47代码框架软件二次开发极简教程
1. 教程说明 本教程适用于对飞控及Stm32程序设计比较熟悉的二次开发者快速掌握PH47框架的使用要点。本教程仅对PH47框架中最主要的二次开发特性进行简要说明,建议与框架中\DevStudio\Algorithms\Controller_Demo.cpp(.h)示例代码配合学习。关于二次开发特性中的详细…...
SQL Server-导入和导出excel数据-注意事项
环境: win10,SQL Server 2008 R2 之前写过的放在这里: SqlServer_陆沙的博客-CSDN博客 https://blog.csdn.net/pxy7896/category_12704205.html 最近重启ASP.NET项目,在使用sql server导出和导入数据时遇到一些问题,特…...
Linux系统:配置Apache支持CGI(Ubuntu)
配置Apache支持CGI 根据以下步骤配置,实现Apache支持CGI 安装Apache: 可参照文章: Ubuntu安装Apache教程。执行以下命令,修改Apache2配置文件000-default.conf: sudo vim /etc/apache2/sites-enabled/000-default.con…...
qt 序列化和反序列化
序列化:QByteArray buffer; QBuffer bufferDevice(&buffer); bufferDevice.open(QIODevice::WriteOnly); QDataStream out(&bufferDevice); out.setVersion(QDataStream::Qt_5_13); 反序列化: void deserialize(const QByteArray &buffer) {…...
java实现文件变动监听
在文件的内容发生变动时,应用可以感知这种变种,并重新加载文件内容,更新应用内部缓存 实现 轮询:定时器Timer,ScheduledExecutorService 判断文件修改:根据java.io.File#lastModified获取文件的上次修改时…...
Maven的使用
1. Maven 简介 https://maven.apache.org/ Maven 是一个强大的项目管理和构建工具,广泛应用于 Java 项目中,旨在简化项目的依赖管理、构建、测试、部署等工作。Maven 主要通过定义 pom.xml(Project Object Model 文件)来管理项…...
C++开发进阶1:C++编程命名规范
进行C开发时最基础且最重要的是命名规范,掌握良好的命名规范能增加代码的可读性。 认识文件: .cpp:C 源文件. .h或.hpp:C 头文件 .tpp模板实现文件(如果模板定义和实现分开) .inl内联文件,…...
Android 图片相识度比较(pHash)
概述 在 Android 中,要比对两张 Bitmap 图片的相似度,常见的方法有基于像素差异、直方图比较、或者使用一些更高级的算法如 SSIM(结构相似性)和感知哈希(pHash)。 1. 基于像素的差异比较 可以逐像素比较…...
Gitlab 完全卸载–亲测可行
1、停止gitlab gitlab-ctl stop2.卸载gitlab(注意这里写的是gitlab-ce) rpm -e gitlab-ce 3、查看gitlab进程 ps aux | grep gitlab 4、杀掉第一个进程(就是带有好多.............的进程) 5、删除所有包含gitlab文件 find / …...
gitlab操作和管理
详细的说明下这几条指令: Git global setup git config --global user.name “” git config --global user.email “” Create a new repository git clone ssh://git12/letect.git cd vlm-event-secondary-detect git switch -c main touch README.md git add RE…...
利用最小二乘法找圆心和半径
#include <iostream> #include <vector> #include <cmath> #include <Eigen/Dense> // 需安装Eigen库用于矩阵运算 // 定义点结构 struct Point { double x, y; Point(double x_, double y_) : x(x_), y(y_) {} }; // 最小二乘法求圆心和半径 …...
大数据学习栈记——Neo4j的安装与使用
本文介绍图数据库Neofj的安装与使用,操作系统:Ubuntu24.04,Neofj版本:2025.04.0。 Apt安装 Neofj可以进行官网安装:Neo4j Deployment Center - Graph Database & Analytics 我这里安装是添加软件源的方法 最新版…...
macOS多出来了:Google云端硬盘、YouTube、表格、幻灯片、Gmail、Google文档等应用
文章目录 问题现象问题原因解决办法 问题现象 macOS启动台(Launchpad)多出来了:Google云端硬盘、YouTube、表格、幻灯片、Gmail、Google文档等应用。 问题原因 很明显,都是Google家的办公全家桶。这些应用并不是通过独立安装的…...
成都鼎讯硬核科技!雷达目标与干扰模拟器,以卓越性能制胜电磁频谱战
在现代战争中,电磁频谱已成为继陆、海、空、天之后的 “第五维战场”,雷达作为电磁频谱领域的关键装备,其干扰与抗干扰能力的较量,直接影响着战争的胜负走向。由成都鼎讯科技匠心打造的雷达目标与干扰模拟器,凭借数字射…...
Element Plus 表单(el-form)中关于正整数输入的校验规则
目录 1 单个正整数输入1.1 模板1.2 校验规则 2 两个正整数输入(联动)2.1 模板2.2 校验规则2.3 CSS 1 单个正整数输入 1.1 模板 <el-formref"formRef":model"formData":rules"formRules"label-width"150px"…...
蓝桥杯3498 01串的熵
问题描述 对于一个长度为 23333333的 01 串, 如果其信息熵为 11625907.5798, 且 0 出现次数比 1 少, 那么这个 01 串中 0 出现了多少次? #include<iostream> #include<cmath> using namespace std;int n 23333333;int main() {//枚举 0 出现的次数//因…...
【Linux】Linux 系统默认的目录及作用说明
博主介绍:✌全网粉丝23W,CSDN博客专家、Java领域优质创作者,掘金/华为云/阿里云/InfoQ等平台优质作者、专注于Java技术领域✌ 技术范围:SpringBoot、SpringCloud、Vue、SSM、HTML、Nodejs、Python、MySQL、PostgreSQL、大数据、物…...
day36-多路IO复用
一、基本概念 (服务器多客户端模型) 定义:单线程或单进程同时监测若干个文件描述符是否可以执行IO操作的能力 作用:应用程序通常需要处理来自多条事件流中的事件,比如我现在用的电脑,需要同时处理键盘鼠标…...
论文阅读:LLM4Drive: A Survey of Large Language Models for Autonomous Driving
地址:LLM4Drive: A Survey of Large Language Models for Autonomous Driving 摘要翻译 自动驾驶技术作为推动交通和城市出行变革的催化剂,正从基于规则的系统向数据驱动策略转变。传统的模块化系统受限于级联模块间的累积误差和缺乏灵活性的预设规则。…...
Linux部署私有文件管理系统MinIO
最近需要用到一个文件管理服务,但是又不想花钱,所以就想着自己搭建一个,刚好我们用的一个开源框架已经集成了MinIO,所以就选了这个 我这边对文件服务性能要求不是太高,单机版就可以 安装非常简单,几个命令就…...
