当前位置: 首页 > news >正文

使用Matplotlib绘制极轴散点图

散点图对于理解数据可视化中变量之间的相互作用至关重要。虽然散点图经常在笛卡尔坐标中创建,但我们也可以使用Matplotlib在极轴上创建散点图。有了这个功能,人们可以以创新的方式查看圆形或角形数据,例如周期性趋势或定向模式。在本文中,我们将介绍在Python中使用Matplotlib在极轴上绘制散点图的概念,包括如何创建它们,可视化它们和自定义它们。

极轴上的散点图

极坐标通过它们与参考点(原点)的距离以及与参考轴(通常为正x轴)形成的角度来表示平面中的点,与笛卡尔坐标相反,笛卡尔坐标使用x和y轴。

让我们考虑一个简单的例子,其中我们有一个包含方向数据的数据集,例如不同时间的风向。我们希望在极坐标图上将这些数据可视化为散点。

在极轴上可视化散点图

import matplotlib.pyplot as plt
import numpy as np# Generating sample data
theta = np.linspace(0, 2*np.pi, 100)
r = np.random.rand(100) # Random radius values
colors = np.random.rand(100) # Random colors# Creating the polar scatter plot
plt.figure(figsize=(8, 8))
ax = plt.subplot(111, polar=True)
ax.scatter(theta, r, c=colors, s=100, cmap='hsv', alpha=0.75)plt.title('Scatter Plot on Polar Axis', fontsize=15)
plt.show()
  • 这段代码使用np.linspace创建了一个由100个等距角度组成的数组,这些角度在0到2π之间(整圆)。
  • 这些角度表示极轴上数据点的位置。
  • r使用np.random.rand生成一个0到1之间的100个随机数的数组,表示数据点沿径向轴距原点的距离。

在这里插入图片描述
数据点围绕极轴相当均匀地分散。θ值对应于点的角度,r值对应于点到原点的距离。距离原点较近的点用蓝色表示,而距离原点较远的点用红色表示。

极轴上的散点图,偏移原点

# Create the polar scatter plot with offset origin
plt.figure(figsize=(8, 8))
ax = plt.subplot(111, polar=True, theta_offset=np.pi/4)  # Offset origin by pi/4
ax.scatter(theta, r, c=colors, s=100, cmap='hsv', alpha=0.75)plt.title('Scatter Plot on Polar Axis with Offset Origin', fontsize=15)
plt.show()
  • 极轴上的散点图以圆形方式显示数据点。
  • 偏移原点np.pi/4会移动绘图的起点,从而提供不同的参考。

在这里插入图片描述
使用极坐标绘制数据,其中每个点由角度(theta)和半径(r)表示。

  • 图的原点偏移π/4弧度,这意味着零角度位于极轴上的45度标记处。
  • 数据点由不同大小的彩色圆圈表示。
  • 每个点的颜色由其色调、饱和度和值(HSV颜色模型)确定。
  • 每个点的大小设置为100,透明度设置为0.75。

极轴上局限于扇形的散点图

# Create the polar scatter plot confined to a sector
plt.figure(figsize=(8, 8))
ax = plt.subplot(111, polar=True)
ax.scatter(theta, r, c=colors, s=100, cmap='hsv', alpha=0.75)# Confine scatter plot to a sector
ax.set_thetamin(45) # Minimum theta angle
ax.set_thetamax(135) # Maximum theta angleplt.title('Scatter Plot on Polar Axis Confined to a Sector', fontsize=15)
plt.show()
  • 此代码创建极散点图并将其限制在指定的扇区(45到135度)。
  • set_thetamin和set_thetamax函数控制散点图的角度范围,提供指定扇区内的聚焦视图。

在这里插入图片描述

  • 数据点根据色调饱和度值(HSV)色图着色,即每个点的颜色对应于其角度(theta)值。数据点的大小也是变化的,较大的点对应于较大的r值。
  • 该图被限制在45度和135度之间的扇区,因为数据仅与该角度范围相关。

总结

总之,学习如何在Python中使用Matplotlib在极轴上绘制散点图,为显示方向或圆形数据模式提供了一种革命性的方法。

相关文章:

使用Matplotlib绘制极轴散点图

散点图对于理解数据可视化中变量之间的相互作用至关重要。虽然散点图经常在笛卡尔坐标中创建,但我们也可以使用Matplotlib在极轴上创建散点图。有了这个功能,人们可以以创新的方式查看圆形或角形数据,例如周期性趋势或定向模式。在本文中&…...

Elasticsearch入门:增删改查详解与实用场景

引言 在我之前做社交架构设计的时候,我们有一项关键且必要的需求:需要存储并记录用户的所有聊天记录。这些记录不仅用于业务需求,也承担了风控审查的职责。因此,在架构设计中,我们需要考虑每天海量的聊天消息量&#…...

【AI论文精读6】SELF-RAG(23.10)附录

【AI论文解读】【AI知识点】【AI小项目】【AI战略思考】 P1,P2,P3 附录 A SELF-RAG 细节 A.1 反思标记(reflection tokens) 反思标记的定义 下面我们提供了反思标记类型和输出标记的详细定义。前三个方面将在每个片段&#xf…...

sql-labs靶场第十七关测试报告

目录 一、测试环境 1、系统环境 2、使用工具/软件 二、测试目的 三、操作过程 1、寻找注入点 2、注入数据库 ①寻找注入方法 ②爆库,查看数据库名称 ③爆表,查看security库的所有表 ④爆列,查看users表的所有列 ⑤成功获取用户名…...

面试官:MySQL一次到底插入多少条数据合适啊?

前言 大家好!在互联网时代,我们的每一个动作,无论是浏览网页、分享动态、点赞、购物或者搜索信息,都会在背后产生数据。这些数据,根据其用途和重要性,可能会被储存到不同的地方,其中最常见的存…...

WSL2 构建Ubuntu系统-轻量级AI运行环境

环境:Win11 软件:WSL2 安装环境:Ubuntu 22.04 检查电脑是否开启虚拟化 打开:任务管理器->性能->CPU CPU 开启虚拟化(通常默认是开启的,如果没有开启需要BIOS开启) 虚拟化设置&#xff0…...

什么是凸二次规划问题

我们从凸二次规划的基本概念出发,然后解释它与支持向量机的关系。 一、凸二次规划问题的详细介绍 凸二次规划问题是优化问题的一类,目标是最小化一个凸的二次函数,受一组线性约束的限制。凸二次规划是一类特殊的二次规划问题,其…...

解决 Elasticsearch cluster_block_exception 错误的终极指南

Elasticsearch 是一个功能强大的分布式搜索引擎,广泛应用于全文检索、实时分析等场景。 尽管如此,像任何复杂系统一样,它也会遇到一些运行问题,其中较为常见且影响较大的就是 cluster_block_exception 错误。 本文将深入解析这种错…...

QT sql驱动错误QMYSQL driver not loaded

引用文章QMYSQL driver not loaded 根据引用文章,到在编译QT mysql.pro的源码步骤时,构建没有报错,但是在对应的文件夹内没有找到编译好的dll文件,经过全电脑搜寻,找到在此文件夹内。 遇到同样错误的朋友可以找找QT安…...

数据驱动,漫途能耗管理系统打造高效节能新生态!

在我国能源消耗结构中,工业企业所占能耗比例相对较大。为实现碳达峰、碳中和目标,工厂需强化能效管理,减少能耗与成本。高效的能耗管理系统通过数据采集与分析,能实时监控工厂能源使用及报警情况,为节能提供数据。构建…...

PH47代码框架软件二次开发极简教程

1. 教程说明 本教程适用于对飞控及Stm32程序设计比较熟悉的二次开发者快速掌握PH47框架的使用要点。本教程仅对PH47框架中最主要的二次开发特性进行简要说明,建议与框架中\DevStudio\Algorithms\Controller_Demo.cpp(.h)示例代码配合学习。关于二次开发特性中的详细…...

SQL Server-导入和导出excel数据-注意事项

环境: win10,SQL Server 2008 R2 之前写过的放在这里: SqlServer_陆沙的博客-CSDN博客 https://blog.csdn.net/pxy7896/category_12704205.html 最近重启ASP.NET项目,在使用sql server导出和导入数据时遇到一些问题,特…...

Linux系统:配置Apache支持CGI(Ubuntu)

配置Apache支持CGI 根据以下步骤配置,实现Apache支持CGI 安装Apache: 可参照文章: Ubuntu安装Apache教程。执行以下命令,修改Apache2配置文件000-default.conf: sudo vim /etc/apache2/sites-enabled/000-default.con…...

qt 序列化和反序列化

序列化:QByteArray buffer; QBuffer bufferDevice(&buffer); bufferDevice.open(QIODevice::WriteOnly); QDataStream out(&bufferDevice); out.setVersion(QDataStream::Qt_5_13); 反序列化: void deserialize(const QByteArray &buffer) {…...

java实现文件变动监听

在文件的内容发生变动时,应用可以感知这种变种,并重新加载文件内容,更新应用内部缓存 实现 轮询:定时器Timer,ScheduledExecutorService 判断文件修改:根据java.io.File#lastModified获取文件的上次修改时…...

Maven的使用

1. Maven 简介 https://maven.apache.org/ Maven 是一个强大的项目管理和构建工具,广泛应用于 Java 项目中,旨在简化项目的依赖管理、构建、测试、部署等工作。Maven 主要通过定义 pom.xml(Project Object Model 文件)来管理项…...

C++开发进阶1:C++编程命名规范

进行C开发时最基础且最重要的是命名规范,掌握良好的命名规范能增加代码的可读性。 认识文件: .cpp:C 源文件. .h或.hpp:C 头文件 .tpp模板实现文件(如果模板定义和实现分开) .inl内联文件,…...

Android 图片相识度比较(pHash)

概述 在 Android 中,要比对两张 Bitmap 图片的相似度,常见的方法有基于像素差异、直方图比较、或者使用一些更高级的算法如 SSIM(结构相似性)和感知哈希(pHash)。 1. 基于像素的差异比较 可以逐像素比较…...

Gitlab 完全卸载–亲测可行

1、停止gitlab gitlab-ctl stop2.卸载gitlab(注意这里写的是gitlab-ce) rpm -e gitlab-ce 3、查看gitlab进程 ps aux | grep gitlab 4、杀掉第一个进程(就是带有好多.............的进程) 5、删除所有包含gitlab文件 find / …...

gitlab操作和管理

详细的说明下这几条指令: Git global setup git config --global user.name “” git config --global user.email “” Create a new repository git clone ssh://git12/letect.git cd vlm-event-secondary-detect git switch -c main touch README.md git add RE…...

第19节 Node.js Express 框架

Express 是一个为Node.js设计的web开发框架,它基于nodejs平台。 Express 简介 Express是一个简洁而灵活的node.js Web应用框架, 提供了一系列强大特性帮助你创建各种Web应用,和丰富的HTTP工具。 使用Express可以快速地搭建一个完整功能的网站。 Expre…...

linux之kylin系统nginx的安装

一、nginx的作用 1.可做高性能的web服务器 直接处理静态资源(HTML/CSS/图片等),响应速度远超传统服务器类似apache支持高并发连接 2.反向代理服务器 隐藏后端服务器IP地址,提高安全性 3.负载均衡服务器 支持多种策略分发流量…...

Prompt Tuning、P-Tuning、Prefix Tuning的区别

一、Prompt Tuning、P-Tuning、Prefix Tuning的区别 1. Prompt Tuning(提示调优) 核心思想:固定预训练模型参数,仅学习额外的连续提示向量(通常是嵌入层的一部分)。实现方式:在输入文本前添加可训练的连续向量(软提示),模型只更新这些提示参数。优势:参数量少(仅提…...

Java如何权衡是使用无序的数组还是有序的数组

在 Java 中,选择有序数组还是无序数组取决于具体场景的性能需求与操作特点。以下是关键权衡因素及决策指南: ⚖️ 核心权衡维度 维度有序数组无序数组查询性能二分查找 O(log n) ✅线性扫描 O(n) ❌插入/删除需移位维护顺序 O(n) ❌直接操作尾部 O(1) ✅内存开销与无序数组相…...

【单片机期末】单片机系统设计

主要内容:系统状态机,系统时基,系统需求分析,系统构建,系统状态流图 一、题目要求 二、绘制系统状态流图 题目:根据上述描述绘制系统状态流图,注明状态转移条件及方向。 三、利用定时器产生时…...

css的定位(position)详解:相对定位 绝对定位 固定定位

在 CSS 中,元素的定位通过 position 属性控制,共有 5 种定位模式:static(静态定位)、relative(相对定位)、absolute(绝对定位)、fixed(固定定位)和…...

Java面试专项一-准备篇

一、企业简历筛选规则 一般企业的简历筛选流程:首先由HR先筛选一部分简历后,在将简历给到对应的项目负责人后再进行下一步的操作。 HR如何筛选简历 例如:Boss直聘(招聘方平台) 直接按照条件进行筛选 例如&#xff1a…...

JavaScript 数据类型详解

JavaScript 数据类型详解 JavaScript 数据类型分为 原始类型(Primitive) 和 对象类型(Object) 两大类,共 8 种(ES11): 一、原始类型(7种) 1. undefined 定…...

苹果AI眼镜:从“工具”到“社交姿态”的范式革命——重新定义AI交互入口的未来机会

在2025年的AI硬件浪潮中,苹果AI眼镜(Apple Glasses)正在引发一场关于“人机交互形态”的深度思考。它并非简单地替代AirPods或Apple Watch,而是开辟了一个全新的、日常可接受的AI入口。其核心价值不在于功能的堆叠,而在于如何通过形态设计打破社交壁垒,成为用户“全天佩戴…...

数据库——redis

一、Redis 介绍 1. 概述 Redis(Remote Dictionary Server)是一个开源的、高性能的内存键值数据库系统,具有以下核心特点: 内存存储架构:数据主要存储在内存中,提供微秒级的读写响应 多数据结构支持&…...