LayerSkip – Meta推出加速大型语言模型推理过程的技术
我们提出的 LayerSkip 是一种端到端的解决方案,可加快大型语言模型(LLM)的推理速度。 首先,在训练过程中,我们采用了层间丢弃技术(layer dropout),早期层间丢弃率较低,后期层间丢弃率较高。 其次,在推理过程中,我们证明这种训练方法提高了早期退出的准确性,而无需在模型中添加任何辅助层或模块。 第三,我们提出了一种新颖的自推测解码方案,即在早期层退出,并通过模型的其余层进行验证和校正。 与其他推测式解码方法相比,我们提出的自推测式解码方法占用的内存更少,并能从草稿和验证阶段的共享计算和激活中获益。 我们在不同大小的 Llama 模型上进行了不同类型的训练实验:从头开始预训练、持续预训练、在特定数据域上进行微调,以及在特定任务上进行微调。 我们实施了推理解决方案,结果表明,CNN/DM 文档的摘要速度提高了 2.16 倍,编码速度提高了 1.82 倍,TOPv2 语义解析任务的速度提高了 2.0 倍。 我们在 https://github.com/facebookresearch/LayerSkip 开源了我们的代码。

快速上手
$ git clone git@github.com:facebookresearch/LayerSkip.git
$ cd LayerSkip
创建环境
$ conda create --name layer_skip python=3.10
$ conda activate layer_skip$ pip install -r requirements.txt
访问模型: 为了观察加速情况,您需要访问使用 LayerSkip 配方训练过的 LLM。 我们在 HuggingFace 上提供了 6 个检查点,它们是使用 LayerSkip 配方持续预训练的不同 Llama 模型:
facebook/layerskip-llama2-7Bfacebook/layerskip-llama2-13Bfacebook/layerskip-codellama-7Bfacebook/layerskip-codellama-34Bfacebook/layerskip-llama3-8Bfacebook/layerskip-llama3.2-1B
代码
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer
from copy import deepcopycheckpoint = "facebook/layerskip-llama3.2-1B"
early_exit = 4
device = "cuda" if torch.cuda.is_available() else "cpu"
prompt = "typing import List\ndef bucket_sort(A: List):"model = AutoModelForCausalLM.from_pretrained(checkpoint, device_map="auto", use_safetensors=True, torch_dtype=torch.bfloat16)
tokenizer = AutoTokenizer.from_pretrained(checkpoint)generation_config = model.generation_configweights_memo = {id(w): w for w in model.parameters()}
assistant_model = deepcopy(model, memo=weights_memo) # Clone main model with shared weights
assistant_model.model.layers = assistant_model.model.layers[:early_exit] # Apply early exit
del assistant_model.model.layers[early_exit:]inputs = tokenizer(prompt, return_tensors="pt").to(device)outputs = model.generate(**inputs, generation_config=generation_config, assistant_model=assistant_model, max_new_tokens=512)
print(tokenizer.batch_decode(outputs, skip_special_tokens=True)[0])
或者Torchrun
$ torchrun generate.py --model facebook/layerskip-llama2-7B \--sample True \--max_steps 512
LayerSkip的项目地址
- GitHub仓库:https://github.com/facebookresearch/LayerSkip
- HuggingFace模型库:https://huggingface.co/collections/facebook/layerskip-666b25c50c8ae90e1965727a
- arXiv技术论文:https://arxiv.org/pdf/2404.16710
感谢大家花时间阅读我的文章,你们的支持是我不断前进的动力。期望未来能为大家带来更多有价值的内容,请多多关注我的动态!
相关文章:
LayerSkip – Meta推出加速大型语言模型推理过程的技术
我们提出的 LayerSkip 是一种端到端的解决方案,可加快大型语言模型(LLM)的推理速度。 首先,在训练过程中,我们采用了层间丢弃技术(layer dropout),早期层间丢弃率较低,后期层间丢弃率较高。 其次…...
环境变量与本地变量(Linux)
引言 在当今的计算机技术领域,Linux操作系统以其稳定性和灵活性而广受欢迎。它不仅是服务器和开发者的首选平台,也是探索计算机科学和系统编程的宝库。在这个强大的操作系统中,环境变量与本地变量扮演着至关重要的角色,它们是管理…...
【完-网络安全】Windows防火墙及出入站规则
文章目录 防火墙入站和出站的区别域网络、专用网络、公用网络的区别 防火墙 防火墙默认状态一般是出站允许,入站阻止。 入站和出站的区别 入站就是别人来访问我们的主机,也就是正向shell的操作 出站就是反向shell,主机需要主动连接kali&am…...
Vue学习记录之十七 css中样式穿透及新特征介绍
一、scoped原理 在vue页面的css中,有一个设置为scoped,使用以后dom的节点会出现下面的规则。其实我们打完包就是一个html页面,如果不做处理,将会导致css混乱。 给HTML的DOM节点加一个不重复data属性(形如:data-v-123)来表示他的唯一性在每句css选择器的末尾(编译后的生成的…...
Nature 正刊丨海洋涡旋中常见的地下热浪和寒潮
01摘要 由于全球变暖,极端海洋温度事件变得越来越普遍,造成了灾难性的生态和社会经济影响1,2,3,4,5。尽管基于卫星观测对表层海洋热浪(MHW)和海洋寒潮(MCS)进行了广泛的研究6,7,但我们对这些极…...
代码随想录算法训练营第六十二天| prim算法,kruskal算法
训练营六十二天打卡,图论比较难,坚持下来胜利就在眼前! 53.卡码网【寻宝】 题目链接 解题过程 没做过类似的题目,跟着答案敲了一遍最小生成树 可以使用 prim算法 也可以使用 kruskal算法计算出来。prim算法 是从节点的角度 采用…...
Newstar_week1_week2_wp
week1 wp crypto 一眼秒了 n费马分解再rsa flag: import libnum import gmpy2 from Crypto.Util.number import * p 9648423029010515676590551740010426534945737639235739800643989352039852507298491399561035009163427050370107570733633350911691280297…...
今天我们研究一段代码(异或位运算)
let a 18 // 甲 let b 20 // 乙a a ^ b b a ^ b a a ^ b console.log("a",a) // a 20 console.log("b",b) // b 18今天我们就研究上面这一段代码,简单解释一下,初始化一个a 18 b 20, 中间经过了三次的异或之后…...
pycharm中使用ctrl+鼠标滚轮改变字体大小
文章目录 pycharm使用ctrl鼠标滚轮改变字体大小1.打开pycharm选择file2.选择setting4.选择keymap,然后再右边的输入框中输入increase进行增大字体4.鼠标选择后,点击添加鼠标快捷方式,然后设置鼠标滚轮往上增大字体。5.设置缩小字体࿰…...
【算法-动态规划】打家劫舍专题
文章目录 1.打家劫舍1.1一维数组1.2三变量法1.3双数组法 2.打家劫舍22.1双数组法2.2 三变量法 3.打家劫舍33.1动态规划3.2双变量法 4.删除相邻数字的最大分数4.1双状态数组4.2一维数组4.3三变量法 1.打家劫舍 198. 打家劫舍 - 力扣(LeetCode) 1.1一维数…...
关于技术管理者的一些思考
前 言 在软件开发领域,当一名资深工程师有机会成为一名技术管理者的时候,通常他/她的反应是什么?兴奋、担扰、无奈还是推托,具体是什么心情也许对结果并不重要,更加重要是在一刻,我们一定要问问我们内心的…...
Alpha-CLIP: A CLIP Model Focusing on Wherever You Want CVPR 2024
在原始的接受RGB三通道输入的CLIP模型的上额外增加了一个alpha通道。在千万量级的RGBA-region的图像文本对上进行训练后,Alpha-CLIP可以在保证CLIP原始感知能力的前提下,关注到任意指定区域。 GitHub - SunzeY/AlphaCLIP: [CVPR 2024] Alpha-CLIP: A CLI…...
Golang | Leetcode Golang题解之第495题提莫攻击
题目: 题解: func findPoisonedDuration(timeSeries []int, duration int) (ans int) {expired : 0for _, t : range timeSeries {if t > expired {ans duration} else {ans t duration - expired}expired t duration}return }...
04 go语言(golang) - 变量和赋值过程
变量 在Go语言中,变量的定义和初始化是编程的基础部分。Go提供了多种方式来声明和初始化变量,以适应不同的使用场景。 基本变量声明 使用var关键字: 使用var关键字可以在函数内部或外部声明变量。如果在函数外部声明,该变量为全…...
语言/图像/视频模型一网打尽!BigModel大模型开放平台助力开发者轻松打造AI新应用!
2024年8⽉28⽇,在ACM SIGKDD(国际数据挖掘与知识发现⼤会,KDD)上会议现场,智谱AI重磅推出了新⼀代全⾃研基座⼤模型 GLM-4-Plus、图像/视频理解模型 GLM-4V-Plus 和⽂⽣图模型 CogView3-Plus。这些新模型,已…...
Go语言Linux环境搭建以编写第一个Go程序
目录 文章目录 目录Go语言入门1、说明2、CentOS7安装Go3、编写第一个程序3.1、编写程序3.2、运行程序3.3、生成二进制文件4、编写第一个web程序4.1、编写代码4.2、运行程序4.3、测试访问4.4、生成二进制配置Vim-go语法高亮1)、下载和设置Vundle.vim(vim安装插件的工具)2)、…...
使用 Go 构建一个最小的 API 应用
最近有项目要使用 Go 开发,作为一个. NET Core 选手,准备先撸一个包含 CRUD 的最小 MVP 项目练手。 要创建一个 TODO 应用,会创建下面这些接口: APIDescriptionRequest bodyResponse bodyGET /todoitemsGet all to-do itemsNone…...
MySQL 日常维护指南:常见任务、频率及问题解决
MySQL 作为一种广泛使用的开源关系型数据库,随着数据量和应用复杂性的增加,定期的数据库维护对于保持系统高效运行至关重要。通过合理的日常维护,数据库管理员能够确保 MySQL 数据库的稳定性、性能以及数据的完整性。本文将介绍 MySQL 的常见…...
oracle ORA-24920:列大小对于客户机过大
问题描述 在一次读取某个视图数据过程中,当数据读取到x条时,报错ORA-24920:列大小对于客户机过大。 通过查询资料得知,oracle 数据库升级到了12c,VARCHAR2的容量也从4000升级到了32767。 所以猜测某个字段的长度超过4…...
使用 Docker compose 部署 Nacos(达梦数据库)
1. 制作镜像的源码地址 https://github.com/wangsilingwsl/nacos-dm.git 参考的开源项目:https://github.com/jeecgboot/JeecgBoot/tree/master/jeecg-boot/jeecg-server-cloud/jeecg-cloud-nacos (master分支;tag:v3.7.1&#…...
<6>-MySQL表的增删查改
目录 一,create(创建表) 二,retrieve(查询表) 1,select列 2,where条件 三,update(更新表) 四,delete(删除表…...
基于Uniapp开发HarmonyOS 5.0旅游应用技术实践
一、技术选型背景 1.跨平台优势 Uniapp采用Vue.js框架,支持"一次开发,多端部署",可同步生成HarmonyOS、iOS、Android等多平台应用。 2.鸿蒙特性融合 HarmonyOS 5.0的分布式能力与原子化服务,为旅游应用带来…...
python如何将word的doc另存为docx
将 DOCX 文件另存为 DOCX 格式(Python 实现) 在 Python 中,你可以使用 python-docx 库来操作 Word 文档。不过需要注意的是,.doc 是旧的 Word 格式,而 .docx 是新的基于 XML 的格式。python-docx 只能处理 .docx 格式…...
HBuilderX安装(uni-app和小程序开发)
下载HBuilderX 访问官方网站:https://www.dcloud.io/hbuilderx.html 根据您的操作系统选择合适版本: Windows版(推荐下载标准版) Windows系统安装步骤 运行安装程序: 双击下载的.exe安装文件 如果出现安全提示&…...
Spring AI 入门:Java 开发者的生成式 AI 实践之路
一、Spring AI 简介 在人工智能技术快速迭代的今天,Spring AI 作为 Spring 生态系统的新生力量,正在成为 Java 开发者拥抱生成式 AI 的最佳选择。该框架通过模块化设计实现了与主流 AI 服务(如 OpenAI、Anthropic)的无缝对接&…...
EtherNet/IP转DeviceNet协议网关详解
一,设备主要功能 疆鸿智能JH-DVN-EIP本产品是自主研发的一款EtherNet/IP从站功能的通讯网关。该产品主要功能是连接DeviceNet总线和EtherNet/IP网络,本网关连接到EtherNet/IP总线中做为从站使用,连接到DeviceNet总线中做为从站使用。 在自动…...
AI病理诊断七剑下天山,医疗未来触手可及
一、病理诊断困局:刀尖上的医学艺术 1.1 金标准背后的隐痛 病理诊断被誉为"诊断的诊断",医生需通过显微镜观察组织切片,在细胞迷宫中捕捉癌变信号。某省病理质控报告显示,基层医院误诊率达12%-15%,专家会诊…...
Netty从入门到进阶(二)
二、Netty入门 1. 概述 1.1 Netty是什么 Netty is an asynchronous event-driven network application framework for rapid development of maintainable high performance protocol servers & clients. Netty是一个异步的、基于事件驱动的网络应用框架,用于…...
AirSim/Cosys-AirSim 游戏开发(四)外部固定位置监控相机
这个博客介绍了如何通过 settings.json 文件添加一个无人机外的 固定位置监控相机,因为在使用过程中发现 Airsim 对外部监控相机的描述模糊,而 Cosys-Airsim 在官方文档中没有提供外部监控相机设置,最后在源码示例中找到了,所以感…...
【HarmonyOS 5】鸿蒙中Stage模型与FA模型详解
一、前言 在HarmonyOS 5的应用开发模型中,featureAbility是旧版FA模型(Feature Ability)的用法,Stage模型已采用全新的应用架构,推荐使用组件化的上下文获取方式,而非依赖featureAbility。 FA大概是API7之…...
