当前位置: 首页 > news >正文

FLINK SQL 任务参数

在Flink SQL任务中,参数配置对于任务的性能和稳定性至关重要。以下是对运行时参数、优化器参数和表参数的详细解析:

一、运行时参数

运行时参数主要影响Flink作业在执行过程中的行为。以下是一些关键的运行时参数:

  1. 并行度(Parallelism):
    • 决定了Flink作业可以同时处理的数据量。
    • 通过增加并行度,可以加快数据处理速度,但同时也会增加资源消耗。
    • 应根据集群规模和数据量来合理设置并行度,避免设置过高导致资源竞争和调度延迟。
  2. 状态后端(State Backend):
    • Flink使用状态后端来存储和管理作业的状态。
    • 选择合适的状态后端(如RocksDB)可以提高状态访问性能。
  3. 检查点(Checkpoint):
    • Flink用于实现容错的一种机制。
    • 合理配置检查点间隔和模式可以提高作业的可靠性,但也会增加资源消耗。
  4. 缓冲区大小(Buffer Size):
    • Flink SQL查询可能涉及与外部系统的数据交换,这时缓冲区的设置就变得很重要。
    • 应根据数据的大小和交换频率来调整缓冲区大小,以减少数据传输和内存消耗。
  5. 异步查询关联:
    • 包括缓存容量和异步超时时间等参数。
  6. 微批处理:
    • 批量访问或更新一次状态,减少对状态的访问次数和时间。
    • 相关参数如table.exec.mini-batch.allow-latency和table.exec.mini-batch.size。
  7. 键值状态保留时长:
    • 如distinct、groupby等运算会用到状态,通过设置无界流中的state.ttl,可以删除一段时间未被访问或更新的状态。
  8. 算子并行度:
    • 空闲数据源闲置检测,保证时间窗口可以正常推进。

二、优化器参数

优化器参数帮助Flink生成更优的执行计划,以下是一些关键的优化器参数:

  1. 2阶段聚合(Two-Stage Aggregation):
    • 在数据倾斜的场景下,先聚合再传递给下游,以减少网络传输和数据倾斜的可能性。
  2. 分桶聚合(Bucket Aggregation):
    • 适用于去重聚合场景,如count(distinct userId)。
    • 将数据的key先打散到多个桶进行聚合,再对分桶中的数据最后聚合。
  3. 微批处理(Mini-Batch Processing):
    • 在GroupAggFunction处理每一条输入数据时,通过微批处理可以减少对状态的访问次数。
  4. 去重场景优化:
    • 如bitmap去重复用优化,通过Filter子句来实现去重场景BitMap复用。

三、表参数

表参数主要影响Flink SQL中表的定义和行为。以下是一些关键的表参数:

  1. 连接器参数:
    • 如数据源和数据目标的连接器参数,这些参数定义了如何连接到外部系统以及数据的格式和传输方式。
  2. 分区参数:
    • 定义了表的分区策略,如分区键、分区数量等。
  3. 格式参数:
    • 定义了数据的存储格式,如Avro、Parquet、CSV等。
  4. 主键和索引:
    • 定义了表的主键和索引,这些参数对于查询性能和数据一致性至关重要。
  5. table.exec.sink.keyed-shuffle:
    • 为解决向带有主键的表中写入数据时出现的分布式乱序问题,可以通过此参数来进行Hash Shuffle操作。

四、配置示例

以下是一个简单的Flink SQL任务参数配置示例:

-- 运行时参数配置  
SET parallelism = 4;  
SET state.backend = rocksdb;  
SET checkpoint.interval = 10000;  -- 检查点间隔,单位为毫秒  
SET taskmanager.memory.process.size = 4096m;  -- TaskManager进程内存大小  -- 优化器参数配置  
SET table.exec.mini-batch.enabled = true;  
SET table.exec.mini-batch.allow-latency = 2s;  
SET table.exec.mini-batch.size = 100;  -- 微批处理大小  -- 表参数配置  
CREATE TABLE source_table (  id INT,  name STRING,  age INT,  PRIMARY KEY (id) NOT ENFORCED  
) WITH (  'connector' = 'kafka',  'topic' = 'source_topic',  'properties.bootstrap.servers' = 'localhost:9092',  'format' = 'json'  
);  CREATE TABLE target_table (  id INT,  total_age BIGINT,  PRIMARY KEY (id) NOT ENFORCED  
) WITH (  'connector' = 'jdbc',  'url' = 'jdbc:mysql://localhost:3306/testdb',  'table-name' = 'target_table',  'username' = 'root',  'password' = 'password'  
);

请注意,以上配置仅为示例,实际配置应根据具体需求和场景进行调整。在配置参数时,务必参考Flink官方文档和最佳实践,以确保配置的准确性和有效性。

相关文章:

FLINK SQL 任务参数

在Flink SQL任务中,参数配置对于任务的性能和稳定性至关重要。以下是对运行时参数、优化器参数和表参数的详细解析: 一、运行时参数 运行时参数主要影响Flink作业在执行过程中的行为。以下是一些关键的运行时参数: 并行度(Para…...

HCIP——以太网交换安全(四)DHCP Snooping

目录 一、DHCP Snooping的知识点 二、DHCP Snooping实验拓扑 三、总结 一、DHCP Snooping的知识点 1.1、DHCP snooping 概述: ①DHCP Snooping使能DHCP的一种安全特性,用于保证DHCP客户端从合法的DHCP服务端获取IP地址。DHCP服务器记录DHCP客户端IP…...

k8s worker 节点关机 sts 管理的 pod 无法迁移

背景 1.28.2 版本 k8s 中的一台 worker 节点内存异常,需要关机换内存,正好可以测试一下 pod 的迁移。 发现 deployment 管理的 pod 是能够重新创建飘到其他节点上的,但是 statefulset 管理的 pod 一直处于 Terminating 状态无法迁移&#…...

排序04 视频播放建模

视频播放时长 用p拟合y,t是用户的实际观看时长,用y和p熵作为损失函数,使得p接近y。 输出z,对z做sigmoid变换。 exp(z)可以视为对播放时长的预估 视频完播 回归方法 二元分类方法 调整:预估完播率不能直接使用...

【常见大模型API调用】第三篇:清华智谱--智谱AI

1. 公司及模型介绍 智谱AI是一家由清华大学计算机系知识工程实验室的技术成果转化而来的AI知识智能技术开发商。智谱AI致力于打造新一代认知智能大模型,专注于做大模型的中国创新。 2024年1月16日,智谱AI在首届技术开放日上发布了新一代基座大模型GLM-…...

LayerSkip – Meta推出加速大型语言模型推理过程的技术

我们提出的 LayerSkip 是一种端到端的解决方案,可加快大型语言模型(LLM)的推理速度。 首先,在训练过程中,我们采用了层间丢弃技术(layer dropout),早期层间丢弃率较低,后期层间丢弃率较高。 其次…...

环境变量与本地变量(Linux)

引言 在当今的计算机技术领域,Linux操作系统以其稳定性和灵活性而广受欢迎。它不仅是服务器和开发者的首选平台,也是探索计算机科学和系统编程的宝库。在这个强大的操作系统中,环境变量与本地变量扮演着至关重要的角色,它们是管理…...

【完-网络安全】Windows防火墙及出入站规则

文章目录 防火墙入站和出站的区别域网络、专用网络、公用网络的区别 防火墙 防火墙默认状态一般是出站允许,入站阻止。 入站和出站的区别 入站就是别人来访问我们的主机,也就是正向shell的操作 出站就是反向shell,主机需要主动连接kali&am…...

Vue学习记录之十七 css中样式穿透及新特征介绍

一、scoped原理 在vue页面的css中,有一个设置为scoped,使用以后dom的节点会出现下面的规则。其实我们打完包就是一个html页面,如果不做处理,将会导致css混乱。 给HTML的DOM节点加一个不重复data属性(形如:data-v-123)来表示他的唯一性在每句css选择器的末尾(编译后的生成的…...

Nature 正刊丨海洋涡旋中常见的地下热浪和寒潮

01摘要 由于全球变暖,极端海洋温度事件变得越来越普遍,造成了灾难性的生态和社会经济影响1,2,3,4,5。尽管基于卫星观测对表层海洋热浪(MHW)和海洋寒潮(MCS)进行了广泛的研究6,7,但我们对这些极…...

代码随想录算法训练营第六十二天| prim算法,kruskal算法

训练营六十二天打卡,图论比较难,坚持下来胜利就在眼前! 53.卡码网【寻宝】 题目链接 解题过程 没做过类似的题目,跟着答案敲了一遍最小生成树 可以使用 prim算法 也可以使用 kruskal算法计算出来。prim算法 是从节点的角度 采用…...

Newstar_week1_week2_wp

week1 wp crypto 一眼秒了 n费马分解再rsa flag: import libnum import gmpy2 from Crypto.Util.number import * p 9648423029010515676590551740010426534945737639235739800643989352039852507298491399561035009163427050370107570733633350911691280297…...

今天我们研究一段代码(异或位运算)

let a 18 // 甲 let b 20 // 乙a a ^ b b a ^ b a a ^ b console.log("a",a) // a 20 console.log("b",b) // b 18今天我们就研究上面这一段代码,简单解释一下,初始化一个a 18 b 20, 中间经过了三次的异或之后…...

pycharm中使用ctrl+鼠标滚轮改变字体大小

文章目录 pycharm使用ctrl鼠标滚轮改变字体大小1.打开pycharm选择file2.选择setting4.选择keymap,然后再右边的输入框中输入increase进行增大字体4.鼠标选择后,点击添加鼠标快捷方式,然后设置鼠标滚轮往上增大字体。5.设置缩小字体&#xff0…...

【算法-动态规划】打家劫舍专题

文章目录 1.打家劫舍1.1一维数组1.2三变量法1.3双数组法 2.打家劫舍22.1双数组法2.2 三变量法 3.打家劫舍33.1动态规划3.2双变量法 4.删除相邻数字的最大分数4.1双状态数组4.2一维数组4.3三变量法 1.打家劫舍 198. 打家劫舍 - 力扣(LeetCode) 1.1一维数…...

关于技术管理者的一些思考

前 言 在软件开发领域,当一名资深工程师有机会成为一名技术管理者的时候,通常他/她的反应是什么?兴奋、担扰、无奈还是推托,具体是什么心情也许对结果并不重要,更加重要是在一刻,我们一定要问问我们内心的…...

Alpha-CLIP: A CLIP Model Focusing on Wherever You Want CVPR 2024

在原始的接受RGB三通道输入的CLIP模型的上额外增加了一个alpha通道。在千万量级的RGBA-region的图像文本对上进行训练后,Alpha-CLIP可以在保证CLIP原始感知能力的前提下,关注到任意指定区域。 GitHub - SunzeY/AlphaCLIP: [CVPR 2024] Alpha-CLIP: A CLI…...

Golang | Leetcode Golang题解之第495题提莫攻击

题目: 题解: func findPoisonedDuration(timeSeries []int, duration int) (ans int) {expired : 0for _, t : range timeSeries {if t > expired {ans duration} else {ans t duration - expired}expired t duration}return }...

04 go语言(golang) - 变量和赋值过程

变量 在Go语言中,变量的定义和初始化是编程的基础部分。Go提供了多种方式来声明和初始化变量,以适应不同的使用场景。 基本变量声明 使用var关键字: 使用var关键字可以在函数内部或外部声明变量。如果在函数外部声明,该变量为全…...

语言/图像/视频模型一网打尽!BigModel大模型开放平台助力开发者轻松打造AI新应用!

2024年8⽉28⽇,在ACM SIGKDD(国际数据挖掘与知识发现⼤会,KDD)上会议现场,智谱AI重磅推出了新⼀代全⾃研基座⼤模型 GLM-4-Plus、图像/视频理解模型 GLM-4V-Plus 和⽂⽣图模型 CogView3-Plus。这些新模型,已…...

web vue 项目 Docker化部署

Web 项目 Docker 化部署详细教程 目录 Web 项目 Docker 化部署概述Dockerfile 详解 构建阶段生产阶段 构建和运行 Docker 镜像 1. Web 项目 Docker 化部署概述 Docker 化部署的主要步骤分为以下几个阶段: 构建阶段(Build Stage)&#xff1a…...

【JavaEE】-- HTTP

1. HTTP是什么? HTTP(全称为"超文本传输协议")是一种应用非常广泛的应用层协议,HTTP是基于TCP协议的一种应用层协议。 应用层协议:是计算机网络协议栈中最高层的协议,它定义了运行在不同主机上…...

大型活动交通拥堵治理的视觉算法应用

大型活动下智慧交通的视觉分析应用 一、背景与挑战 大型活动(如演唱会、马拉松赛事、高考中考等)期间,城市交通面临瞬时人流车流激增、传统摄像头模糊、交通拥堵识别滞后等问题。以演唱会为例,暖城商圈曾因观众集中离场导致周边…...

srs linux

下载编译运行 git clone https:///ossrs/srs.git ./configure --h265on make 编译完成后即可启动SRS # 启动 ./objs/srs -c conf/srs.conf # 查看日志 tail -n 30 -f ./objs/srs.log 开放端口 默认RTMP接收推流端口是1935,SRS管理页面端口是8080,可…...

C++中string流知识详解和示例

一、概览与类体系 C 提供三种基于内存字符串的流&#xff0c;定义在 <sstream> 中&#xff1a; std::istringstream&#xff1a;输入流&#xff0c;从已有字符串中读取并解析。std::ostringstream&#xff1a;输出流&#xff0c;向内部缓冲区写入内容&#xff0c;最终取…...

Spring AI 入门:Java 开发者的生成式 AI 实践之路

一、Spring AI 简介 在人工智能技术快速迭代的今天&#xff0c;Spring AI 作为 Spring 生态系统的新生力量&#xff0c;正在成为 Java 开发者拥抱生成式 AI 的最佳选择。该框架通过模块化设计实现了与主流 AI 服务&#xff08;如 OpenAI、Anthropic&#xff09;的无缝对接&…...

前端开发面试题总结-JavaScript篇(一)

文章目录 JavaScript高频问答一、作用域与闭包1.什么是闭包&#xff08;Closure&#xff09;&#xff1f;闭包有什么应用场景和潜在问题&#xff1f;2.解释 JavaScript 的作用域链&#xff08;Scope Chain&#xff09; 二、原型与继承3.原型链是什么&#xff1f;如何实现继承&a…...

MySQL中【正则表达式】用法

MySQL 中正则表达式通过 REGEXP 或 RLIKE 操作符实现&#xff08;两者等价&#xff09;&#xff0c;用于在 WHERE 子句中进行复杂的字符串模式匹配。以下是核心用法和示例&#xff1a; 一、基础语法 SELECT column_name FROM table_name WHERE column_name REGEXP pattern; …...

零基础在实践中学习网络安全-皮卡丘靶场(第九期-Unsafe Fileupload模块)(yakit方式)

本期内容并不是很难&#xff0c;相信大家会学的很愉快&#xff0c;当然对于有后端基础的朋友来说&#xff0c;本期内容更加容易了解&#xff0c;当然没有基础的也别担心&#xff0c;本期内容会详细解释有关内容 本期用到的软件&#xff1a;yakit&#xff08;因为经过之前好多期…...

【SSH疑难排查】轻松解决新版OpenSSH连接旧服务器的“no matching...“系列算法协商失败问题

【SSH疑难排查】轻松解决新版OpenSSH连接旧服务器的"no matching..."系列算法协商失败问题 摘要&#xff1a; 近期&#xff0c;在使用较新版本的OpenSSH客户端连接老旧SSH服务器时&#xff0c;会遇到 "no matching key exchange method found"​, "n…...