R语言机器学习算法实战系列(十二)线性判别分析分类算法 (Linear Discriminant Analysis)
禁止商业或二改转载,仅供自学使用,侵权必究,如需截取部分内容请后台联系作者!
文章目录
- 介绍
- LDA的原理
- LDA的步骤
- 教程
- 下载数据
- 加载R包
- 导入数据
- 数据预处理
- 数据描述
- 数据切割
- 构建模型
- 预测测试数据
- 评估模型
- 模型准确性
- 混淆矩阵
- 模型评估指标
- ROC Curve
- PRC Curve
- 保存模型
- 总结
- 优点:
- 缺点:
- 系统信息
介绍
线性判别分析(LDA)是一种监督学习的降维技术,同时也是一种分类算法。它旨在找到一个线性组合的特征,这些特征对于区分或分类不同的组或类别是最佳的。LDA假设每个类别的数据都是正态分布的,并且所有类别共享相同的协方差矩阵。
LDA的原理
- 类内散布矩阵(Within-Class Scatter Matrix):这是衡量每个类别内部数据点分散程度的矩阵。对于所有类别,这个矩阵是它们各自类内散布矩阵的和。
- 类间散布矩阵(Between-Class Scatter Matrix):这是衡量不同类别之间数据点分散程度的矩阵。它反映了类别均值与总体均值之间的差异。
- 判别函数:LDA通过最大化类间散布矩阵与类内散布矩阵的比率来找到最佳的投影方向,这个比率被称为判别函数。
相关文章:

R语言机器学习算法实战系列(十二)线性判别分析分类算法 (Linear Discriminant Analysis)
禁止商业或二改转载,仅供自学使用,侵权必究,如需截取部分内容请后台联系作者! 文章目录 介绍LDA的原理LDA的步骤教程下载数据加载R包导入数据数据预处理数据描述数据切割构建模型预测测试数据评估模型模型准确性混淆矩阵模型评估指标ROC CurvePRC Curve保存模型总结优点:缺…...
[LeetCode] 50. Pow(x, n)
题目描述: 实现 pow(x, n) ,即计算 x 的整数 n 次幂函数(即,xn )。 示例 1: 输入:x 2.00000, n 10 输出:1024.00000示例 2: 输入:x 2.10000, n 3 输出…...
Vue学习笔记(七、事件修饰符 .stop .capture .self .once .prevent)
先看一段基本的代码: <!DOCTYPE html> <html lang"en"><head><meta charset"UTF-8"><title>VueBaseCode</title><script src"./lib/vue.js"></script><style>.inner {width:…...

web网站搭建(静态)
准备工作: 关闭防火墙: [rootlocalhost ~]# systemctl disable --now firewalld 修改enforce为permissive [rootlocalhost ~]# setenforce 0 [rootlocalhost ~]# geten getenforce getent [rootlocalhost ~]# getenforce Permissive 重启服务 [rootloca…...
高效特征选择策略:提升Python机器学习模型性能的方法
高效特征选择策略:提升Python机器学习模型性能的方法 目录 🔍 特征选择的重要性📊 相关性分析🔄 递归特征消除 (RFE)🌳 基于模型的特征选择 1. 🔍 特征选择的重要性 特征选择在机器学习中至关重要&#…...

2024年TI杯E题-三子棋游戏装置方案分享-jdk123团队-第四弹 第一题
#1024程序员节|征文# 往期回顾 前期准备 摄像头bug解决 手搓机械臂 视觉模块的封装 第一问: 需要将一颗黑棋,放入棋盘中的五号位置。 理想思路:依据摄像头,依据机械臂及其传感器。建立机械臂的逆运动学方程。然后完…...

优化多表联表查询的常见方法归纳
目录 一、使用mybatis的嵌套查询 二、添加表冗余字段,减少联表查询需求 三、分表预处理,前端再匹配 一、使用mybatis的嵌套查询 【场景说明】 前端需要展示一张列表,其中的字段来源于多张表,如何进行查询优化? 【…...

Java毕业设计 基于SpringBoot发卡平台
Java毕业设计 基于SpringBoot发卡平台 这篇博文将介绍一个基于SpringBoot发卡平台,适合用于Java毕业设计。 功能介绍 首页 图片轮播 商品介绍 商品详情 提交订单 文章教程 文章详情 查询订单 查看订单卡密 客服 后台管理 登录 个人信息 修改密码 管…...
VRoid Studio 介绍 3D 模型编辑器
VRoid Studio 是由日本公司 pixiv 开发的一款免费 3D 模型创建软件,专门设计用于轻松制作 3D 虚拟角色。它的主要特点是用户友好,允许没有 3D 建模经验的用户创建高质量的 3D 人物角色,尤其是针对虚拟主播(Vtuber)、动…...

软件设计模式------抽象工厂模式
抽象工厂模式(Abstract Factory Pattern),又称Kit模式,属于对象创建型模式。 一:先理解两个概念: (1)产品等级结构: 即产品的继承结构。 通俗来讲,就是不同品…...

基于springboot+微信小程序校园自助打印管理系统(打印1)
👉文末查看项目功能视频演示获取源码sql脚本视频导入教程视频 1、项目介绍 基于springboot微信小程序校园自助打印管理系统实现了管理员、店长和用户。管理员实现了用户管理、店长管理、打印店管理、打印服务管理、服务类型管理、预约打印管理和系统管理。店长实现…...

解锁文本数据可视化的无限可能:Wordcloud库全解析
文章目录 **🌟解锁文本数据可视化的无限可能:Wordcloud库全解析🔐**1. **背景介绍**2. **Wordcloud库是什么?**3. **如何安装Wordcloud库?**4. **Wordcloud库的基本函数使用方法**5. **实际应用场景**6. **常见问题及解…...

代码审计-Python Flask
1.Jinjia2模版注入 Flask是一个使用 Python 编写的轻量级 Web 应用框架。其 WSGI 工具箱采用 Werkzeug ,模板引擎则使用 Jinja2。jinja2是Flask作者开发的一个模板系统,起初是仿django模板的一个模板引擎,为Flask提供模板支持,由于…...

深度学习:开启人工智能的新纪元
深度学习:开启人工智能的新纪元 深度学习是机器学习的一个子领域,它基于人工神经网络的学习算法,特别是那些具有多个非线性变换的层(即“深度”)。这些算法模仿人脑处理信息的方式,通过学习数据的多层次表…...

第十四章_File类与IO流
目录 1. java.io.File类的使用 1.1 概述 1.2 构造器 1.3 常用方法 1、获取文件和目录基本信息 2、列出目录的下一级 3、File类的重命名功能 4、判断功能的方法 5、创建、删除功能 1.4 练习 2. IO流原理及流的分类 2.1 Java IO原理 2.2 流的分类 2.3 流的API 3. …...
Qml-CheckBox的使用
Qml-CheckBox的使用 CheckBox属性 CheckBox的继承关系: CheckBox – AbstractButton – Control – Item; CheckBox的属性主要继承于AbstractButton。属性checkState:勾选状态,值为:Qt.Unchecked、Qt.Checked、Qt.PartiallyChec…...
Java的RocketMQ使用
在 Spring Boot 中,RocketMQ 和 Kafka 都是常用的消息中间件,它们的使用方法有一些相似之处,也有各自的特点。 一、RocketMQ 在 Spring Boot 中的使用 引入依赖 在项目的pom.xml文件中添加 RocketMQ 的依赖。 <dependency><groupId…...
中间件之MQ-Kafka
一、引言 Apache Kafka是一个分布式消息队列系统,最初由LinkedIn开发,并于2011年开源。Kafka以其高吞吐量、低延迟和容错能力而著名,广泛应用于日志收集、实时流处理、事件驱动架构等领域。本文将详细介绍Kafka的基本概念、特点、应用场景以…...

[DB] NSM
Database Workloads(数据库工作负载) 数据库工作负载指的是数据库在执行不同类型任务时所需的资源和计算方式,主要包括以下几种类型: 1. On-Line Transaction Processing (OLTP) 中文:联机事务处理解释:…...

Redis 高可用:从主从到集群的全面解析
目录 一、主从复制 (基础)1. 同步复制a. 全量数据同步b. 增量数据同步c. 可能带来的数据不一致 2. 环形缓冲区a. 动态调整槽位 3. runid4. 主从复制解决单点故障a. 单点故障b. 可用性问题 5. 注意事项a. Replica 主动向 Master 建立连接b. Replica 主动向 Master 拉取数据 二、…...
基于大模型的 UI 自动化系统
基于大模型的 UI 自动化系统 下面是一个完整的 Python 系统,利用大模型实现智能 UI 自动化,结合计算机视觉和自然语言处理技术,实现"看屏操作"的能力。 系统架构设计 #mermaid-svg-2gn2GRvh5WCP2ktF {font-family:"trebuchet ms",verdana,arial,sans-…...

stm32G473的flash模式是单bank还是双bank?
今天突然有人stm32G473的flash模式是单bank还是双bank?由于时间太久,我真忘记了。搜搜发现,还真有人和我一样。见下面的链接:https://shequ.stmicroelectronics.cn/forum.php?modviewthread&tid644563 根据STM32G4系列参考手…...

23-Oracle 23 ai 区块链表(Blockchain Table)
小伙伴有没有在金融强合规的领域中遇见,必须要保持数据不可变,管理员都无法修改和留痕的要求。比如医疗的电子病历中,影像检查检验结果不可篡改行的,药品追溯过程中数据只可插入无法删除的特性需求;登录日志、修改日志…...

最新SpringBoot+SpringCloud+Nacos微服务框架分享
文章目录 前言一、服务规划二、架构核心1.cloud的pom2.gateway的异常handler3.gateway的filter4、admin的pom5、admin的登录核心 三、code-helper分享总结 前言 最近有个活蛮赶的,根据Excel列的需求预估的工时直接打骨折,不要问我为什么,主要…...
【git】把本地更改提交远程新分支feature_g
创建并切换新分支 git checkout -b feature_g 添加并提交更改 git add . git commit -m “实现图片上传功能” 推送到远程 git push -u origin feature_g...
土地利用/土地覆盖遥感解译与基于CLUE模型未来变化情景预测;从基础到高级,涵盖ArcGIS数据处理、ENVI遥感解译与CLUE模型情景模拟等
🔍 土地利用/土地覆盖数据是生态、环境和气象等诸多领域模型的关键输入参数。通过遥感影像解译技术,可以精准获取历史或当前任何一个区域的土地利用/土地覆盖情况。这些数据不仅能够用于评估区域生态环境的变化趋势,还能有效评价重大生态工程…...

ardupilot 开发环境eclipse 中import 缺少C++
目录 文章目录 目录摘要1.修复过程摘要 本节主要解决ardupilot 开发环境eclipse 中import 缺少C++,无法导入ardupilot代码,会引起查看不方便的问题。如下图所示 1.修复过程 0.安装ubuntu 软件中自带的eclipse 1.打开eclipse—Help—install new software 2.在 Work with中…...
关于 WASM:1. WASM 基础原理
一、WASM 简介 1.1 WebAssembly 是什么? WebAssembly(WASM) 是一种能在现代浏览器中高效运行的二进制指令格式,它不是传统的编程语言,而是一种 低级字节码格式,可由高级语言(如 C、C、Rust&am…...

蓝桥杯3498 01串的熵
问题描述 对于一个长度为 23333333的 01 串, 如果其信息熵为 11625907.5798, 且 0 出现次数比 1 少, 那么这个 01 串中 0 出现了多少次? #include<iostream> #include<cmath> using namespace std;int n 23333333;int main() {//枚举 0 出现的次数//因…...
DeepSeek 技术赋能无人农场协同作业:用 AI 重构农田管理 “神经网”
目录 一、引言二、DeepSeek 技术大揭秘2.1 核心架构解析2.2 关键技术剖析 三、智能农业无人农场协同作业现状3.1 发展现状概述3.2 协同作业模式介绍 四、DeepSeek 的 “农场奇妙游”4.1 数据处理与分析4.2 作物生长监测与预测4.3 病虫害防治4.4 农机协同作业调度 五、实际案例大…...