机器学习:opencv--人脸检测以及微笑检测
目录
前言
一、人脸检测的原理
1.特征提取
2.分类器
二、代码实现
1.图片预处理
2.加载分类器
3.进行人脸识别
4.标注人脸及显示
三、微笑检测
前言
人脸检测是计算机视觉中的一个重要任务,旨在自动识别图像或视频中的人脸。它可以用于多种应用,如安全监控、身份验证、人机交互等。
一、人脸检测的原理
1.特征提取
-
Haar特征:
- 基于Haar小波变换,通过简单的矩形特征(如眼睛、鼻子、嘴巴的对比)来识别图像中的人脸。
- Haar特征计算速度快,适合实时应用。
2.分类器
这里使用的是python自带的库的分类器模型,是一种级联分类器
- 分类器需要对图像的多个特征进行识别。
- 例如,在识别一个动物是狗(正类)还是其他动物(负类)时,直接根据多个条件进行判断,流程是非常烦琐的。
- 如果先判断该动物有几条腿。有四条腿的动物被判断为可能为狗,并对此范围内的对象继续进行分析和判断。
- 没有四条腿的动物直接被否决,即不可能是狗。
- 只通过比较腿的数目就能排除样本集中大量的负类(如鸡、鸭、鹅等不是狗的动物的实例)。
- 级联分类器就是基于这种思路将多个简单的分类器按照一定的顺序级联而成的。
二、代码实现
1.图片预处理
import cv2image = cv2.imread('quanjiafu2.jpg')
image = cv2.resize(image, None, fx=0.4, fy=0.4)
gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
2.加载分类器
"""-----------------加载分类器----------------"""
faceCascade = cv2.CascadeClassifier('haarcascade_frontalface_default.xml')
3.进行人脸识别
"""------------------- 分类器检测实现人脸识别--------------"""
# objects = cv2.CascadeClassifier,detectMultiscale( imagel, scaleFactor[,minNeighbors[,flags[,minsize[, maxsize]]]]])
# 其中,各个参数及返回值的含义如下:
# image:待检测图像,通常为灰度图像。
# scaleFactor:表示在前后两次相继扫描中搜索窗口的缩放比例。识别,扫描,按照不同比例来进行扫描
# minNeighbors:表示构成检测目标的相邻矩形的最小个数。在默认情况下,该参数的值为 3,
# 表示有 3 个以上的检测标记存在时才认为存在人脸。如果希望提高检测的准确率可以将该参数的值设置得更大。
# 但这样做可能会让一些人脸无法被检测到。
# flags: 该参数通常被省略。在使用低版本 OpencV(opencV 1.X 版本)时,该参数可能会被设置为
# CV_HAAR_DO_CANNY_PRUNING,表示使用 Canny 边缘检测器拒绝一些区域。
# minSize:目标的最小尺寸,小于这个尺寸的目标将被忽略。
# maxSize: 目标的最大尺寸,大于这个尺寸的目标将被忽略。通常情况下,将该可选参数省略即可
# 若 maxsize 和 minsize 大小一致,则表示仅在一个尺度上食找目标。
# objects: 返回值. 目标对象的矩形框向量组。该值是一组矩形信息.
# 包含每个检测到的人脸对应的矩形框的信息(x轴方向位置、y轴方向位置、宽度、高度)faces = faceCascade.detectMultiScale(gray, scaleFactor=1.05, minNeighbors=5, minSize=(8, 8))
print("发现{0}张人脸!".format(len(faces)))
print("其位置分别是:", faces)
4.标注人脸及显示
"""---------------标注人脸及显示------------------"""
for (x, y, w, h) in faces:cv2.rectangle(image, (x, y), (x + w, y + h), (0, 255, 0), 2)
cv2.imshow('result', image)
cv2.waitKey(0)
cv2.destroyAllWindows()
输出:
三、微笑检测
- 微笑检测是在人脸检测的基础上进行的
- 加载微笑检测分类器
- 打开摄像头
- 检测一帧图片
- 进行人脸检测
- 提取出每张人脸所在的矩形区域
- 对该矩形区域进行微笑检测
- 微笑时,在矩形框的左上角表上smile
- 按下esc结束
import cv2faceCascade = cv2.CascadeClassifier('haarcascade_frontalface_default.xml')
smile = cv2.CascadeClassifier('haarcascade_smile.xml')cap = cv2.VideoCapture(0)
while True:ret, frame = cap.read()frame = cv2.flip(frame, 1) # 图片翻转 水平翻转if not ret:breakgray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)faces = faceCascade.detectMultiScale(gray, scaleFactor=1.1, minNeighbors=10, minSize=(5, 5))"""--------处理每张人脸-------"""for (x, y, w, h) in faces:cv2.rectangle(frame, (x, y), (x + w, y + h), (0, 255, 0), 2)# 提取人脸所在区域 多通道形式# roiColorFace = frame[y:y+h,x:x+w]# 单通道形式roi_gray_face = gray[y:y + h, x:x + w]# 微笑检测smiles = smile.detectMultiScale(roi_gray_face, scaleFactor=1.5, minNeighbors=10, minSize=(50, 50))for (sx, sy, sw, sh) in smiles:cv2.putText(frame, "smile", (x, y), cv2.FONT_HERSHEY_COMPLEX_SMALL, 1, (0, 255, 255), 2)cv2.imshow('result', frame)a = cv2.waitKey(100)if a == 27:breakprint(frame.shape)
# 释放摄像头赟源
cap.release()
# 关闭所有openCV创建的窗口
cv2.destroyAllWindows()
相关文章:

机器学习:opencv--人脸检测以及微笑检测
目录 前言 一、人脸检测的原理 1.特征提取 2.分类器 二、代码实现 1.图片预处理 2.加载分类器 3.进行人脸识别 4.标注人脸及显示 三、微笑检测 前言 人脸检测是计算机视觉中的一个重要任务,旨在自动识别图像或视频中的人脸。它可以用于多种应用࿰…...

linux系统挂载硬盘
参考链接:https://www.cnblogs.com/wenhainan/p/12292823.html (1)lsblk命令查看磁盘挂载情况 (2)使用fdisk分区新磁盘 如果要分多个分区需指定每个分区的大小 (3)格式化新分区 mkfs命令格…...

MySQL实现主从同步
一、首先我们准备3台mysql 分别为: 主服务器:test-mysql-master,端口3306 从服务器:test-mysql-slave1,端口3307 从服务器:test-mysql-slave2,端口3308 注意:如果防火墙是开着的记得把关掉,并且重启docker…...

人工智能--数学基础
目录 编辑2.1 线性代数基础 2.2 微积分及优化理论 2.3 概率论与统计学 2.4 信息论简介 2.1 线性代数基础 线性代数是处理向量空间(包括有限维或无限维)以及这些空间上的线性映射的一门数学分支。在线性代数中,最核心的概念包括向量、矩…...

2024人工智能技术的普及 如何看待AI技术的应用前景
AI 技术的应用前景十分广阔,但也面临着一些挑战,以下是对其应用前景的一些看法: 积极方面: 多行业深度融合与效率提升5: 医疗领域:AI 在医疗影像分析、辅助诊断、疾病预测等方面具有巨大潜力。例如…...

日常记录:springboot 2.2.5 + es 6.8.12
前言 最近有用到搜索引擎的功能,这不得把之前的es过程实践一遍,但发现过程坎坷,因为版本太低了。 一、安装es 6.8.12 安装过程跟之前写那章日常记录:elasticsearch 在linux安装_elasticsearch linux安装-CSDN博客一样࿰…...
MySQL数据库备份与恢复详解
文章目录 一、为什么需要备份数据库?二、MySQL数据库的备份方式1. 逻辑备份2. 物理备份3. 二进制日志备份 三、恢复数据库1. 使用mysqldump备份文件恢复2. 使用物理备份恢复3. 使用二进制日志恢复 四、备份与恢复的最佳实践五、结语 在日常的数据库运维中࿰…...

10.22 MySQL
存储过程 存储函数 存储函数是有返回值的存储过程,存储函数的参数只能是in类型的。具体语法如下: characteristic 特性 练习: 从1到n的累加 create function fun1(n int) returns int deterministic begindeclare total i…...

「AIGC」n8n AI Agent开源的工作流自动化工具
n8n AI Agent 是一个利用大型语言模型(LLMs)来设计和构建智能体(agents)的工具,这些智能体能够执行一系列复杂的任务,如理解指令、模仿类人推理,以及从用户命令中理解隐含意图。n8n AI Agent 的核心在于构建一系列提示(prompts),使 LLM 能够模拟自主行为。 传送门→ …...
Android 中获取和读取短信验证码
方法一:通过 SMS Retriever API SMS Retriever API 是 Google 提供的一种安全的方式,可以从系统中获取不需要权限的短信验证码。这种方式不需要请求 READ_SMS 权限,非常适合处理短信验证码的情况。 1. 在 build.gradle 中添加依赖 dependen…...

SQL语句高级查询(适用于新手)
SQL查询语句的下载脚本链接!!! 【免费】SQL练习资源-具体练习操作可以查看我发布的文章资源-CSDN文库https://download.csdn.net/download/Z0412_J0103/89908378 本文旨在为那些编程基础相对薄弱的朋友们提供一份详尽的指南,特别聚…...

main.ts中引入App.vue报错,提示“Cannot find module ‘./App.vue’ or its corresponding type
原因 代码编辑器:vscode ,使用vue3,所以安装了 Volar 插件,可以使 vue 代码高亮显示,不同颜色区分代码块,以及语法错误提示等 提示:如果使用的是vue2,则使用 Vetur 插件࿱…...

Android15音频进阶之组音量调试(九十)
简介: CSDN博客专家、《Android系统多媒体进阶实战》一书作者 新书发布:《Android系统多媒体进阶实战》🚀 优质专栏: Audio工程师进阶系列【原创干货持续更新中……】🚀 优质专栏: 多媒体系统工程师系列【原创干货持续更新中……】🚀 优质视频课程:AAOS车载系统+…...

【Java】常用方法合集
以 DemoVo 为实体 import lombok.Data; import com.alibaba.excel.annotation.ExcelProperty; import com.alibaba.excel.annotation.ExcelIgnoreUnannotated;Data ExcelIgnoreUnannotated public class ExportPromoteUnitResult {private String id;ExcelProperty(value &qu…...
深入了解Vue Router:基本用法、重定向、动态路由与路由守卫的性能优化
文章目录 1. 引言2. Vue Router的基本用法2.1 基本配置 3. 重定向和命名路由的使用3.1 重定向3.2 命名路由 4. 在Vue Router中如何处理动态路由4.1 动态路由的概念4.2 如何处理动态路由4.3 动态路由的懒加载 5. 路由守卫的实现与性能影响5.1 什么是路由守卫?5.2 路由…...

深入理解InnoDB底层原理:从数据结构到逻辑架构
💡 无论你是刚刚踏入编程世界的新人,还是希望进一步提升自己的资深开发者,在这里都能找到适合你的内容。我们共同探讨技术难题,一起进步,携手度过互联网行业的每一个挑战。 📣 如果你觉得我的文章对你有帮助,请不要吝啬你的点赞👍分享💕和评论哦! 让我们一起打造…...
Linux介绍及操作命令
Linux 是一种开源的操作系统,具有以下特点和优势: 一、稳定性和可靠性 内核稳定 Linux 内核经过多年的发展和优化,具有高度的稳定性。它能够长时间运行而不出现崩溃或故障,适用于服务器和关键任务应用。内核的稳定性得益于其严格的开发流程和质量控制,以及全球开发者社区…...

JS | 详解图片懒加载的6种实现方案
一、什么是懒加载? 懒加载是一种对网页性能优化的方式,比如,当访问一个网页的时候,优先显示可视区域的图片而不是一次加载全部的图片,当需要显示时,再发送请求加载图片。 懒加载 :延迟加载&…...

Java | Leetcode Java题解之第502题IPO
题目: 题解: class Solution {public int findMaximizedCapital(int k, int w, int[] profits, int[] capital) {int n profits.length;int curr 0;int[][] arr new int[n][2];for (int i 0; i < n; i) {arr[i][0] capital[i];arr[i][1] profi…...

JavaWeb学习(3)
目录 一、9大内置对象 二、JavaBean 三、MVC三层架构 Model View Controller(Servlet) 四、Filter(过滤器) 应用一:处理中文乱码 应用二:登录验证 五、监听器 六、JDBC 一、9大内置对象 PageCont…...

未来机器人的大脑:如何用神经网络模拟器实现更智能的决策?
编辑:陈萍萍的公主一点人工一点智能 未来机器人的大脑:如何用神经网络模拟器实现更智能的决策?RWM通过双自回归机制有效解决了复合误差、部分可观测性和随机动力学等关键挑战,在不依赖领域特定归纳偏见的条件下实现了卓越的预测准…...
变量 varablie 声明- Rust 变量 let mut 声明与 C/C++ 变量声明对比分析
一、变量声明设计:let 与 mut 的哲学解析 Rust 采用 let 声明变量并通过 mut 显式标记可变性,这种设计体现了语言的核心哲学。以下是深度解析: 1.1 设计理念剖析 安全优先原则:默认不可变强制开发者明确声明意图 let x 5; …...

深入浅出Asp.Net Core MVC应用开发系列-AspNetCore中的日志记录
ASP.NET Core 是一个跨平台的开源框架,用于在 Windows、macOS 或 Linux 上生成基于云的新式 Web 应用。 ASP.NET Core 中的日志记录 .NET 通过 ILogger API 支持高性能结构化日志记录,以帮助监视应用程序行为和诊断问题。 可以通过配置不同的记录提供程…...

调用支付宝接口响应40004 SYSTEM_ERROR问题排查
在对接支付宝API的时候,遇到了一些问题,记录一下排查过程。 Body:{"datadigital_fincloud_generalsaas_face_certify_initialize_response":{"msg":"Business Failed","code":"40004","sub_msg…...
Linux链表操作全解析
Linux C语言链表深度解析与实战技巧 一、链表基础概念与内核链表优势1.1 为什么使用链表?1.2 Linux 内核链表与用户态链表的区别 二、内核链表结构与宏解析常用宏/函数 三、内核链表的优点四、用户态链表示例五、双向循环链表在内核中的实现优势5.1 插入效率5.2 安全…...

Mybatis逆向工程,动态创建实体类、条件扩展类、Mapper接口、Mapper.xml映射文件
今天呢,博主的学习进度也是步入了Java Mybatis 框架,目前正在逐步杨帆旗航。 那么接下来就给大家出一期有关 Mybatis 逆向工程的教学,希望能对大家有所帮助,也特别欢迎大家指点不足之处,小生很乐意接受正确的建议&…...

令牌桶 滑动窗口->限流 分布式信号量->限并发的原理 lua脚本分析介绍
文章目录 前言限流限制并发的实际理解限流令牌桶代码实现结果分析令牌桶lua的模拟实现原理总结: 滑动窗口代码实现结果分析lua脚本原理解析 限并发分布式信号量代码实现结果分析lua脚本实现原理 双注解去实现限流 并发结果分析: 实际业务去理解体会统一注…...
WEB3全栈开发——面试专业技能点P2智能合约开发(Solidity)
一、Solidity合约开发 下面是 Solidity 合约开发 的概念、代码示例及讲解,适合用作学习或写简历项目背景说明。 🧠 一、概念简介:Solidity 合约开发 Solidity 是一种专门为 以太坊(Ethereum)平台编写智能合约的高级编…...
Caliper 配置文件解析:config.yaml
Caliper 是一个区块链性能基准测试工具,用于评估不同区块链平台的性能。下面我将详细解释你提供的 fisco-bcos.json 文件结构,并说明它与 config.yaml 文件的关系。 fisco-bcos.json 文件解析 这个文件是针对 FISCO-BCOS 区块链网络的 Caliper 配置文件,主要包含以下几个部…...

OPENCV形态学基础之二腐蚀
一.腐蚀的原理 (图1) 数学表达式:dst(x,y) erode(src(x,y)) min(x,y)src(xx,yy) 腐蚀也是图像形态学的基本功能之一,腐蚀跟膨胀属于反向操作,膨胀是把图像图像变大,而腐蚀就是把图像变小。腐蚀后的图像变小变暗淡。 腐蚀…...