当前位置: 首页 > news >正文

大语言模型数据处理方法(基于llama模型)

文章目录

  • 前言
  • 一、基于huggingface的DataCollatorForSeq2Seq方法解读
    • 1、DataCollatorForSeq2Seq方法
    • 2、batch最长序列填充
    • 3、指定长度填充
  • 二、构建大语言模型数据加工模块
    • 1、数据读取
    • 2、数据加工
      • 1、数据格式
      • 2、预训练(pretrain)数据加工
      • 3、微调(sft)数据加工
        • ①、sft数据加工代码
        • ②、sft数据变换内容
    • 3、数据dataloader方法


前言

本文使用huggingface方法来构建大模型数据加工方法!当然,这些方法也可以为其它大模型使用!。


一、基于huggingface的DataCollatorForSeq2Seq方法解读

1、DataCollatorForSeq2Seq方法

该方法是类似collan_fn函数,就是torch的dataloader对batch包装函数处理,而输入字典给input_ids与labels就好了,这个方法会自动给你添加attention_mask内容,而attention_mask若有pad填充值是0。这个也是huggingface提供内容,而我这里想介绍如何自动填充。

该方法是一个类,其示意源码如下:

class DataCollatorForSeq2Seq:tokenizer:

相关文章:

大语言模型数据处理方法(基于llama模型)

文章目录 前言一、基于huggingface的DataCollatorForSeq2Seq方法解读1、DataCollatorForSeq2Seq方法2、batch最长序列填充3、指定长度填充二、构建大语言模型数据加工模块1、数据读取2、数据加工1、数据格式2、预训练(pretrain)数据加工3、微调(sft)数据加工①、sft数据加工…...

爱奇艺大数据多 AZ 统一调度架构

01# 导语 爱奇艺大数据技术广泛应用于运营决策、用户增长、广告分发、视频推荐、搜索、会员营销等场景,为公司的业务增长和用户体验提供了重要的数据驱动引擎。 多年来,随着公司业务的发展,爱奇艺大数据平台已积累了海量数据,这…...

【C++篇】栈的层叠与队列的流动:在 STL 的韵律中探寻数据结构的优雅之舞

文章目录 C 栈与队列详解:基础与进阶应用前言第一章:栈的介绍与使用1.1 栈的介绍1.2 栈的使用1.2.1 最小栈1.2.2 示例与输出 1.3 栈的模拟实现 第二章:队列的介绍与使用2.1 队列的介绍2.2 队列的使用2.2.1 示例与输出 2.3 队列的模拟实现2.3.…...

使用 Flask 实现简单的登录注册功能

目录 1. 引言 2. 环境准备 3. 数据库设置 4. Flask 应用基本配置 5. 实现用户注册 6. 实现用户登录 7. 路由配置 8. 创建前端页面 9. 结论 1. 引言 在这篇文章中,我们将使用 Flask 框架创建一个简单的登录和注册系统。Flask 是一个轻量级的 Python Web 框架…...

计算机毕业设计Python+大模型微博情感分析 微博舆情预测 微博爬虫 微博大数据 舆情分析系统 大数据毕业设计 NLP文本分类 机器学习 深度学习 AI

温馨提示:文末有 CSDN 平台官方提供的学长联系方式的名片! 温馨提示:文末有 CSDN 平台官方提供的学长联系方式的名片! 温馨提示:文末有 CSDN 平台官方提供的学长联系方式的名片! 《Python大模型微博情感分析…...

CTF--Misc题型小结

(萌新笔记,多多关照,不足之处请及时提出。) 不定时更新~ 目录 密码学相关 文件类型判断 file命令 文件头类型 strings读取 隐写术 尺寸修改 文件头等缺失 EXIF隐写 thumbnail 隐写 文件分离&提取 binwalk foremo…...

深度学习系列——RNN/LSTM/GRU,seq2seq/attention机制

1、RNN/LSTM/GRU可参考: https://zhuanlan.zhihu.com/p/636756912 (1)对于这里面RNN的表示中,使用了输入x和h的拼接描述,其他公式中也是如此 (2)各符号图含义如下 2、关于RNN细节,…...

通过call指令来学习指令摘要表的细节

E8 cw cw 表示E8后面跟随2 字节 (什么数不知道) rel16 指在与指令同一代码段内的相对地址偏移 D ,指向Instruction Operand Encoding 表中的D列, 他告诉我们 操作数1 是一个0FFSET N.S. 在64位模式下,某些指令需要使用“地址覆盖前缀”(address over…...

10分钟使用Strapi(无头CMS)生成基于Node.js的API接口,告别繁琐开发,保姆级教程,持续更新中。

一、什么是Strapi? Strapi 是一个开源的无头(headless) CMS,开发者可以自由选择他们喜欢的开发工具和框架,内容编辑人员使用自有的应用程序来管理和分发他们的内容。得益于插件系统,Strapi 是一个灵活的 C…...

创建插件 DLL 项目

Step 1: 创建插件 DLL 项目 在 Visual Studio 中创建一个新的 DLL 项目&#xff0c;并添加以下文件和代码。 头文件&#xff1a;CShapeBase.h cpp 复制代码 #pragma once #include <afxwin.h> // MFC 必需头文件 #include <string> #include <vector> #i…...

OpenCV双目相机外参标定C++

基于OpenCV库实现双目测量系统外参标定过程。通过分析双目测量系统左右相机拍摄的棋盘格标定板图像&#xff0c;包括角点检测、立体标定、立体校正和畸变校正的步骤&#xff0c;获取左右相机的相对位置关系和姿态。 a.检测每张图像中的棋盘格角点&#xff0c;并进行亚像素级精…...

【GESP】C++一级练习BCQM3055,4位数间隔输出

一级知识点取余、整除运算和格式化输出知识点应用。其实也可以用string去处理&#xff0c;那就属于GESP三级的知识点范畴了&#xff0c;孩子暂未涉及。 题目题解详见&#xff1a;https://www.coderli.com/gesp-1-bcqm3055/ https://www.coderli.com/gesp-1-bcqm3055/https://w…...

纯血鸿蒙的最难时刻才开始

关注卢松松&#xff0c;会经常给你分享一些我的经验和观点。 纯血鸿蒙(HarmonyOS NEXT)也正式发布了&#xff0c;绝对是一个历史性时刻&#xff0c;但最难的鸿蒙第二个阶段&#xff0c;也就是生态圈的建设&#xff0c;才刚刚开始。 目前&#xff0c;我劝你现在不要升级到鸿蒙…...

记一个mysql的坑

数据库表user&#xff0c; 存在一个name字段&#xff0c;字段为varchar类型 现在user表有这么两条记录: idnameageclass1NULL18一班2lisi20二班 假如我根据下面这一条件去更新&#xff0c;更新成功数据行显示为0 update user set age 19 where age 18 and class “一班”…...

Java中的设计模式:单例模式详解

摘要 单例模式&#xff08;Singleton Pattern&#xff09;是Java中最常用的设计模式之一&#xff0c;属于创建型模式。它的主要目的是确保一个类在系统中只有一个实例&#xff0c;并提供一个全局访问点来访问该实例。 1. 单例模式的定义 单例模式确保一个类只有一个实例&…...

NanoTrack原理与转tensorrt推理

文章目录 前言一、NanoTrack 工作原理二、运行demo与转换tensorrt模型2.1 运行pt模型demo2.2 转onnx模型2.3 转tensorrt模型2.4 运行trt模型推理 三、推理速度对比总结 前言 NanoTrack 是一种轻量级且高效的目标跟踪算法&#xff0c;基于Siamese网络架构&#xff0c;旨在在资源…...

YOLO11改进 | 卷积模块 | 卷积模块替换为选择性内核SKConv【附完整代码一键运行】

秋招面试专栏推荐 &#xff1a;深度学习算法工程师面试问题总结【百面算法工程师】——点击即可跳转 &#x1f4a1;&#x1f4a1;&#x1f4a1;本专栏所有程序均经过测试&#xff0c;可成功执行&#x1f4a1;&#x1f4a1;&#x1f4a1; 本文给大家带来的教程是将YOLO11的卷积替…...

CentOS进入单用户模式进行密码重置

一、单用户模式介绍 单用户模式是一种特殊的启动模式&#xff0c;主要用于系统维护和故障排除。在单用户模式下&#xff0c;系统以最小化的状态启动&#xff0c;只有最基本的系统服务会被加载&#xff0c;通常只有root用户可以登录。这种模式提供了对系统的完全控制&#xff0…...

bitpoke- mysql-operator cluster

sidecar版本只支持到8.0.35&#xff0c;35可以支持到mysql8.0.35 . 默认镜像是5.7的。需要自己打sidecar的镜像&#xff1a; # Docker image for sidecar containers # https://github.com/bitpoke/mysql-operator/tree/master/images/mysql-operator-sidecar-8.0 # 参考5…...

第5课 基本数据类型

一、数据类型的诞生 在Python的世界里&#xff0c;万物皆对象&#xff0c;每个对象都有自己的若干属性&#xff0c;每一个属性都能描述对象的某一个方面。就像我们每个人&#xff0c;都有自己的身高、年龄、姓名、性别等很多方面的信息&#xff0c;这里的身高、年龄、姓名、性…...

OpenLayers 可视化之热力图

注&#xff1a;当前使用的是 ol 5.3.0 版本&#xff0c;天地图使用的key请到天地图官网申请&#xff0c;并替换为自己的key 热力图&#xff08;Heatmap&#xff09;又叫热点图&#xff0c;是一种通过特殊高亮显示事物密度分布、变化趋势的数据可视化技术。采用颜色的深浅来显示…...

Vue记事本应用实现教程

文章目录 1. 项目介绍2. 开发环境准备3. 设计应用界面4. 创建Vue实例和数据模型5. 实现记事本功能5.1 添加新记事项5.2 删除记事项5.3 清空所有记事 6. 添加样式7. 功能扩展&#xff1a;显示创建时间8. 功能扩展&#xff1a;记事项搜索9. 完整代码10. Vue知识点解析10.1 数据绑…...

label-studio的使用教程(导入本地路径)

文章目录 1. 准备环境2. 脚本启动2.1 Windows2.2 Linux 3. 安装label-studio机器学习后端3.1 pip安装(推荐)3.2 GitHub仓库安装 4. 后端配置4.1 yolo环境4.2 引入后端模型4.3 修改脚本4.4 启动后端 5. 标注工程5.1 创建工程5.2 配置图片路径5.3 配置工程类型标签5.4 配置模型5.…...

(十)学生端搭建

本次旨在将之前的已完成的部分功能进行拼装到学生端&#xff0c;同时完善学生端的构建。本次工作主要包括&#xff1a; 1.学生端整体界面布局 2.模拟考场与部分个人画像流程的串联 3.整体学生端逻辑 一、学生端 在主界面可以选择自己的用户角色 选择学生则进入学生登录界面…...

基于Uniapp开发HarmonyOS 5.0旅游应用技术实践

一、技术选型背景 1.跨平台优势 Uniapp采用Vue.js框架&#xff0c;支持"一次开发&#xff0c;多端部署"&#xff0c;可同步生成HarmonyOS、iOS、Android等多平台应用。 2.鸿蒙特性融合 HarmonyOS 5.0的分布式能力与原子化服务&#xff0c;为旅游应用带来&#xf…...

相机Camera日志分析之三十一:高通Camx HAL十种流程基础分析关键字汇总(后续持续更新中)

【关注我,后续持续新增专题博文,谢谢!!!】 上一篇我们讲了:有对最普通的场景进行各个日志注释讲解,但相机场景太多,日志差异也巨大。后面将展示各种场景下的日志。 通过notepad++打开场景下的日志,通过下列分类关键字搜索,即可清晰的分析不同场景的相机运行流程差异…...

GitHub 趋势日报 (2025年06月08日)

&#x1f4ca; 由 TrendForge 系统生成 | &#x1f310; https://trendforge.devlive.org/ &#x1f310; 本日报中的项目描述已自动翻译为中文 &#x1f4c8; 今日获星趋势图 今日获星趋势图 884 cognee 566 dify 414 HumanSystemOptimization 414 omni-tools 321 note-gen …...

深入解析C++中的extern关键字:跨文件共享变量与函数的终极指南

&#x1f680; C extern 关键字深度解析&#xff1a;跨文件编程的终极指南 &#x1f4c5; 更新时间&#xff1a;2025年6月5日 &#x1f3f7;️ 标签&#xff1a;C | extern关键字 | 多文件编程 | 链接与声明 | 现代C 文章目录 前言&#x1f525;一、extern 是什么&#xff1f;&…...

Reasoning over Uncertain Text by Generative Large Language Models

https://ojs.aaai.org/index.php/AAAI/article/view/34674/36829https://ojs.aaai.org/index.php/AAAI/article/view/34674/36829 1. 概述 文本中的不确定性在许多语境中传达,从日常对话到特定领域的文档(例如医学文档)(Heritage 2013;Landmark、Gulbrandsen 和 Svenevei…...

智能AI电话机器人系统的识别能力现状与发展水平

一、引言 随着人工智能技术的飞速发展&#xff0c;AI电话机器人系统已经从简单的自动应答工具演变为具备复杂交互能力的智能助手。这类系统结合了语音识别、自然语言处理、情感计算和机器学习等多项前沿技术&#xff0c;在客户服务、营销推广、信息查询等领域发挥着越来越重要…...