数据结构:堆的应用
堆排序
假定有一组数据极多的数,让我们进行排序,那我们很容易想到一种经典的排序方法,冒泡排序,我们对冒泡排序的时间复杂度进行分析:

显然,冒泡排序的时间复杂度是O(n^2),当数据量巨大时,冒泡排序需要比较长时间才能完成排序,这在实际应用中是没有意义的。
而相比之下的堆排序时间开销则小得多。
接下来先给出堆排序的代码:
void Swap(int* child, int* parent)
{int tem = *child;*child = *parent;*parent = tem;
}void DownAdjust(int* p,int size,int parent)
{int child = parent * 2 + 1;while (child<size){if (child<size-1 && p[child + 1] < p[child])//size-1,不是size++child;if (p[child] < p[parent]){Swap(&p[child], &p[parent]);//parent = child;child = parent * 2 + 1;}else{break;}}
}//堆排序
void HeapSort(int* p, int size)
{//1.建堆//先找到最后一个非叶子节点,然后逆序向下调整for (int i = (size - 1 - 1) / 2; i >= 0; i--){DownAdjust(p, size, i);}//2.对堆排序int end = size - 1;while (end>0){Swap(&p[0], &p[end]);DownAdjust(p, end, 0);--end;}
}
我们知道堆在逻辑上是完全二叉树,在物理上是数组,那么给一个很大的数组,我们完全对这个数组进行建堆,然后进行堆排序。
接下来对堆排序的时间复杂度进行分析:
一个程序的时间复杂度看的是执行次数最多的基本语句,因此看建堆的时间复杂度即可:

因此,时间复杂度为O(n)
两者对比我们发现,堆排序显然是更优的。
我们可以看看运行实例:
冒泡排序:

堆排序:

可以看出,堆排序的优越性。
相关文章:
数据结构:堆的应用
堆排序 假定有一组数据极多的数,让我们进行排序,那我们很容易想到一种经典的排序方法,冒泡排序,我们对冒泡排序的时间复杂度进行分析: 显然,冒泡排序的时间复杂度是O(n^2),当数据量…...
Spring Boot 实现文件分片上传和下载
文章目录 一、原理分析1.1 文件分片1.2 断点续传和断点下载1.2 文件分片下载的 HTTP 参数 二、文件上传功能实现2.1 客户端(前端)2.2 服务端 三、文件下载功能实现3.1 客户端(前端)3.2 服务端 四、功能测试4.1 文件上传功能测试4.2 文件下载功能实现 参考资料 完整案例代码&…...
夹逼准则求数列极限(复习总结)
记住这两个准则,然后我们就开始看题目 因为是证明题,所以要放缩到什么值已经是确定的了。也就是放缩到0,然后很明显地可以看出前面已经有一个可以使得极限是0了,并且后面的值明显小于1,就是逐渐缩小的趋势,…...
【python】OpenCV—WaterShed Algorithm(1)
文章目录 1、功能描述2、代码实现3、完整代码4、效果展示5、涉及到的库函数5.1、cv2.pyrMeanShiftFiltering5.2、cv2.morphologyEx5.3、cv2.distanceTransform5.4、cv2.normalize5.5、cv2.watershed 6、参考 1、功能描述 基于分水岭算法对图片进行分割 分水岭分割算法&#x…...
查找与排序-插入排序
思考:在把待排序的元素插入已经有序的子序列中时,是不是一定要逐一比较?有没有改进方法? 在查找插入位置的时候可以采用折半(二分)搜索的办法。 一、折半插入排序 1.折半插入排序算法的基本思想 假设待…...
JAVA基础:多线程 (学习笔记)
多线程 一,什么是线程? 程序:为完成特定任务、用某种语言编写的一组指令的集合,是一段静态的代码进程:程序的一次执行过程。 正在运行的一个程序,进程作为资源分配的单位,在内存中会为每个进程分配不同的…...
盲盒小程序/APP系统,市场发展下的新机遇
当下,年轻人热衷于各种潮玩商品,尤其是一盲盒为主的潮流玩具风靡市场,吸引了众多入局者。随着互联网信息技术的快速发展,各类线上盲盒小程序又进一步推动了盲盒市场的发展,成为年轻人拆盲盒的主要阵地。在盲盒经济中&a…...
Unity3D LayoutGroup组件详解
Unity3D中的LayoutGroup组件是一种强大的工具,用于动态调整UI元素的布局。它主要包括三种类型:Horizontal Layout Group(水平布局组)、Vertical Layout Group(垂直布局组)和Grid Layout Group(网…...
[NeetCode 150] Foreign Dictionary
Foreign Dictionary There is a foreign language which uses the latin alphabet, but the order among letters is not “a”, “b”, “c” … “z” as in English. You receive a list of non-empty strings words from the dictionary, where the words are sorted lex…...
小新学习K8s第一天之K8s基础概念
目录 一、Kubernetes(K8s)概述 1.1、什么是K8s 1.2、K8s的作用 1.3、K8s的功能 二、K8s的特性 2.1、弹性伸缩 2.2、自我修复 2.3、服务发现和负载均衡 2.4、自动发布(默认滚动发布模式)和回滚 2.5、集中化配置管理和密钥…...
如何用终端批量修改一个文件夹里面所有图片的后缀名?
步骤: winr ,然后输入cmd,打开终端 使用cd命令导航到要修改图片后缀名的文件夹。eg.我的该文件夹(C:\dog)下,保存的图片。(cd和文件目录之间要有空格)批量改变后缀名,假如让后缀名全部要从 ".webp&q…...
关于AI网络架构的文章
思科OCP anounce了800G 51.2T G200-based minipack3 switch。对比之前Tesla anounce的TTPoE。真的很好奇,谁是AI-networking的未来,以及思科是否走在正确的路上,以及S1背后的技术。 大致浏览了相关的文章,先mark住,回…...
【ChatGPT】在多轮对话中引导 ChatGPT 保持一致性
在多轮对话中引导 ChatGPT 保持一致性 多轮对话是与 ChatGPT 等对话模型互动时的一大特点,特别是在复杂任务和长时间对话中,保持对话的一致性显得尤为重要。用户往往希望 ChatGPT 能够在上下文中理解先前的对话内容,避免反复重申问题或者给出…...
【Chapter 7】因果推断中的机器学习:从T-学习器到双重稳健估计
随着机器学习技术的发展,数据科学家们开始探索如何将这些先进的方法应用于因果推断问题,尤其是处理异质性效应(Effect Heterogeneity)时。本章将介绍几种基于机器学习的因果推断方法,包括T-学习器、X-学习器和双重稳健…...
vim的使用方法
常见的命令可参考: Linux vi/vim | 菜鸟教程www.runoob.com/linux/linux-vim.html编辑https://link.zhihu.com/?targethttps%3A//www.runoob.com/linux/linux-vim.html 1. vim的工作模式 vi/vim 共分为三种模式,命令模式、编辑输入模式和末行&am…...
OPPO携手比亚迪共同探索手机与汽车互融新时代
10月23日,OPPO与比亚迪宣布签订战略合作协议,双方将共同推进手机与汽车的互融合作,这一合作也标志着两大行业巨头在技术创新和产业融合上迈出了重要一步,为手机与汽车的深度融合探索新的可能。 OPPO创始人兼首席执行官陈明永、OP…...
Apache Linkis:重新定义计算中间件
在大数据技术蓬勃发展的今天,我们见证了从单一计算引擎到多元化计算范式的演进。然而,随着企业数据应用场景的日益丰富,一个严峻的挑战逐渐显现:如何有效管理和协调各类计算引擎,使其能够高效协同工作?Apac…...
go gorm简单使用方法
GORM 是 Go 语言中一个非常流行的 ORM(对象关系映射)库,它允许开发者通过结构体来定义数据库表结构,并提供了丰富的 API 来操作数据库。 安装 go get -u gorm.io/gorm go get -u gorm.io/driver/sqlite表结构 在 gorm 中定义表结…...
【c++高级篇】--多任务编程/多线程(Thread)
目录 1.进程和线程的概念: 1.1 进程(Process): 1.2线程(Thread): 1.3 对比总结: 2.多线程编程: 2.1 基于线程的多任务处理(Thread)…...
【力扣专题栏】两数相加,如何实现存储在链表中的整数相加?
题解目录 1、题目描述解释2、算法原理解析3、代码编写(原始版本)4、代码编写(优化版本) 1、题目描述解释 2、算法原理解析 3、代码编写(原始版本) /*** Definition for singly-linked list.* struct ListN…...
谷歌浏览器插件
项目中有时候会用到插件 sync-cookie-extension1.0.0:开发环境同步测试 cookie 至 localhost,便于本地请求服务携带 cookie 参考地址:https://juejin.cn/post/7139354571712757767 里面有源码下载下来,加在到扩展即可使用FeHelp…...
调用支付宝接口响应40004 SYSTEM_ERROR问题排查
在对接支付宝API的时候,遇到了一些问题,记录一下排查过程。 Body:{"datadigital_fincloud_generalsaas_face_certify_initialize_response":{"msg":"Business Failed","code":"40004","sub_msg…...
盘古信息PCB行业解决方案:以全域场景重构,激活智造新未来
一、破局:PCB行业的时代之问 在数字经济蓬勃发展的浪潮中,PCB(印制电路板)作为 “电子产品之母”,其重要性愈发凸显。随着 5G、人工智能等新兴技术的加速渗透,PCB行业面临着前所未有的挑战与机遇。产品迭代…...
【机器视觉】单目测距——运动结构恢复
ps:图是随便找的,为了凑个封面 前言 在前面对光流法进行进一步改进,希望将2D光流推广至3D场景流时,发现2D转3D过程中存在尺度歧义问题,需要补全摄像头拍摄图像中缺失的深度信息,否则解空间不收敛…...
第25节 Node.js 断言测试
Node.js的assert模块主要用于编写程序的单元测试时使用,通过断言可以提早发现和排查出错误。 稳定性: 5 - 锁定 这个模块可用于应用的单元测试,通过 require(assert) 可以使用这个模块。 assert.fail(actual, expected, message, operator) 使用参数…...
成都鼎讯硬核科技!雷达目标与干扰模拟器,以卓越性能制胜电磁频谱战
在现代战争中,电磁频谱已成为继陆、海、空、天之后的 “第五维战场”,雷达作为电磁频谱领域的关键装备,其干扰与抗干扰能力的较量,直接影响着战争的胜负走向。由成都鼎讯科技匠心打造的雷达目标与干扰模拟器,凭借数字射…...
C++八股 —— 单例模式
文章目录 1. 基本概念2. 设计要点3. 实现方式4. 详解懒汉模式 1. 基本概念 线程安全(Thread Safety) 线程安全是指在多线程环境下,某个函数、类或代码片段能够被多个线程同时调用时,仍能保证数据的一致性和逻辑的正确性…...
是否存在路径(FIFOBB算法)
题目描述 一个具有 n 个顶点e条边的无向图,该图顶点的编号依次为0到n-1且不存在顶点与自身相连的边。请使用FIFOBB算法编写程序,确定是否存在从顶点 source到顶点 destination的路径。 输入 第一行两个整数,分别表示n 和 e 的值(1…...
Mobile ALOHA全身模仿学习
一、题目 Mobile ALOHA:通过低成本全身远程操作学习双手移动操作 传统模仿学习(Imitation Learning)缺点:聚焦与桌面操作,缺乏通用任务所需的移动性和灵活性 本论文优点:(1)在ALOHA…...
短视频矩阵系统文案创作功能开发实践,定制化开发
在短视频行业迅猛发展的当下,企业和个人创作者为了扩大影响力、提升传播效果,纷纷采用短视频矩阵运营策略,同时管理多个平台、多个账号的内容发布。然而,频繁的文案创作需求让运营者疲于应对,如何高效产出高质量文案成…...
