当前位置: 首页 > news >正文

模拟退火算法(Simulated Annealing)详细解读

模拟退火算法(Simulated Annealing) 是一种随机优化算法,受到物理学中金属退火过程的启发。它用于寻找全局最优解,特别适合解决组合优化问题。模拟退火算法通过模拟物质在加热和冷却过程中粒子位置的变化,逐渐寻找系统的最低能量状态,从而逼近最优解。

1. 基本概念

模拟退火算法的基本思想是:

  • 全局搜索:通过随机搜索和概率接受劣解来避免陷入局部最优解。

  • 温度控制:算法使用一个“温度”参数控制搜索过程的随机性。温度在初始阶段较高,允许更大的解空间探索,随着时间的推移,温度逐渐降低,从而减少随机性,使解向最优解收敛。

  • Metropolis准则:在每个状态转移时,根据目标函数值的变化决定是否接受新解。如果新解比旧解好,则一定接受;如果新解较差,以一定的概率接受,概率由温度和解的质量决定。

2. 工作原理

模拟退火算法的基本步骤如下:

  1. 初始化:选择初始解和初始温度,设置降温速率。

  2. 迭代过程

    • 在当前解的邻域内随机选择一个新解。
    • 计算当前解和新解的目标函数值。
    • 根据目标函数值和当前温度决定是否接受新解:
      • 如果新解更优,则接受;
      • 如果新解较差,则以一定概率接受(概率与温度和解的质量相关)。
    • 更新当前解。
  3. 降温:逐步降低温度。

  4. 终止条件:达到设定的迭代次数或温度低于某一阈值时终止。

3. 应用领域

模拟退火算法可以应用于多种领域,包括但不限于:

  • 旅行商问题(TSP)
  • 排程问题(Scheduling)
  • 函数优化
  • 组合优化问题
  • 机器学习中的超参数调优

4. 示例:旅行商问题

旅行商问题(TSP)是一个经典的组合优化问题,目标是找到一条最短路径,使得旅行商能访问所有城市并返回起点。

步骤
  1. 初始化:随机生成一条路径作为初始解,并设定初始温度。

  2. 随机选择邻域解:通过交换路径中的两个城市来生成新路径。

  3. 接受准则

    • 如果新路径更短,则接受新路径。
    • 如果新路径更长,则以一定概率接受。
  4. 降温:逐步降低温度。

Java 示例代码

以下是模拟退火算法解决旅行商问题的示例代码:

import java.util.Arrays;
import java.util.Random;public class SimulatedAnnealingTSP {private static final Random random = new Random();public static void main(String[] args) {// 假设有5个城市,距离矩阵int[][] distance = {{0, 10, 15, 20, 25},{10, 0, 35, 25, 30},{15, 35, 0, 30, 5},{20, 25, 30, 0, 20},{25, 30, 5, 20, 0}};// 初始解int[] currentSolution = {0, 1, 2, 3, 4};double temperature = 10000; // 初始温度double coolingRate = 0.995; // 降温速率// 开始模拟退火int[] bestSolution = Arrays.copyOf(currentSolution, currentSolution.length);double bestCost = calculateCost(bestSolution, distance);while (temperature > 1) {// 生成邻域解int[] newSolution = generateNeighbor(currentSolution);// 计算成本double currentCost = calculateCost(currentSolution, distance);double newCost = calculateCost(newSolution, distance);// 判断是否接受新解if (acceptanceProbability(currentCost, newCost, temperature) > random.nextDouble()) {currentSolution = newSolution; // 更新当前解}// 更新最佳解if (newCost < bestCost) {bestCost = newCost;bestSolution = Arrays.copyOf(newSolution, newSolution.length);}// 降温temperature *= coolingRate;}System.out.println("Best solution: " + Arrays.toString(bestSolution));System.out.println("Best cost: " + bestCost);}// 计算路径成本private static double calculateCost(int[] solution, int[][] distance) {double cost = 0;for (int i = 0; i < solution.length; i++) {cost += distance[solution[i]][solution[(i + 1) % solution.length]];}return cost;}// 生成邻域解private static int[] generateNeighbor(int[] solution) {int[] newSolution = Arrays.copyOf(solution, solution.length);int i = random.nextInt(solution.length);int j = random.nextInt(solution.length);// 交换两个城市int temp = newSolution[i];newSolution[i] = newSolution[j];newSolution[j] = temp;return newSolution;}// 计算接受概率private static double acceptanceProbability(double currentCost, double newCost, double temperature) {if (newCost < currentCost) {return 1.0; // 如果新解更优,则总是接受}return Math.exp((currentCost - newCost) / temperature); // 否则,根据概率接受}
}

代码解读

  1. 距离矩阵:定义城市之间的距离。

  2. 初始解:随机生成一个路径作为初始解。

  3. 邻域解生成:通过交换路径中的两个城市生成邻域解。

  4. 接受概率:通过 acceptanceProbability 方法计算接受新解的概率,使用 Metropolis 准则决定是否接受。

  5. 降温:使用降温速率逐步降低温度,控制随机性的减小。

5. 模拟退火算法的优缺点

优点
  • 全局搜索能力:通过随机性避免陷入局部最优解。
  • 简单易懂:实现较为简单,逻辑清晰。
缺点
  • 参数敏感性:温度初始值和降温速率等参数选择对结果影响较大。
  • 收敛速度:在某些情况下,可能需要较长时间才能找到最优解。

6. 总结

模拟退火算法是一种强大的优化工具,广泛应用于许多领域。通过模拟物质的退火过程,它能有效地探索解空间,并找到全局最优解。尽管算法的参数设置可能影响最终结果,但其全局搜索能力使其在解决复杂优化问题时仍然具有很高的实用价值。

相关文章:

模拟退火算法(Simulated Annealing)详细解读

模拟退火算法&#xff08;Simulated Annealing&#xff09; 是一种随机优化算法&#xff0c;受到物理学中金属退火过程的启发。它用于寻找全局最优解&#xff0c;特别适合解决组合优化问题。模拟退火算法通过模拟物质在加热和冷却过程中粒子位置的变化&#xff0c;逐渐寻找系统…...

(二十一)、Docker 部署 Minikube 使用可视化管理工具 Kuboard

文章目录 1、介绍docker 运行 minikube 集群节点&#xff08;kube-apiserver &#xff09;无法被直接访问的问题Kuboard 需要访问到 k8s 集群的kube-apiserver 2、安装 Kuboard2.1、k8s 集群节点可以被外部直接访问的情况2.1.1、下载镜像2.1.2、运行 deployment.yml2.1.3、访问…...

代码编辑组件

代码编辑组件 文章说明核心代码运行演示源码下载 文章说明 拖了很久&#xff0c;总算是自己写了一个简单的代码编辑组件&#xff0c;虽然还有不少的bug&#xff0c;真的很难写&#xff0c;在写的过程中感觉自己的前端技术根本不够用&#xff0c;好像总是方案不够好&#xff1b;…...

裴蜀定理与欧几里得算法——蓝桥杯真题中的应用

目录 裴蜀定理&#xff08;Bzouts Theorem&#xff09;1、定义2、推论3、欧几里得算法4、多个整数的裴蜀定理扩展 真题挑战解题思路代码实现与详细注释代码解析 裴蜀定理&#xff08;Bzout’s Theorem&#xff09; 1、定义 对于任意两个整数 a 和 b &#xff0c;如果它们的最…...

冯诺依曼架构及CPU相关概念

一. 操作系统的概念 1. 概念 操作系统(Operating System). 首先, 所有的计算机都是由软件和硬件构成的. 而操作系统就是许许多多软件中的一种软件, 操作系统可以看作是由两部分组成: 操作系统内核系统级应用程序. 2. 作用 (1) 管理硬件设备, 调度和协调各个硬件之间的工作.…...

智能管线巡检系统:强化巡检质量,确保安全高效运维

线路巡检质量的监控是确保线路安全、稳定运行的重要环节。为了有效监控巡检质量&#xff0c;采用管线巡检系统是一种高效、科学的手段。以下是对如何通过管线巡检系统实现线路巡检质量监控的详细分析&#xff1a; 一、巡检速度监控 管线巡检系统能够实时监控巡检人员的巡检速度…...

React写关键字高亮的三个方案

1.js正则replaceAlldangerouslySetInnerHTML{{ __html: xxx }}危险属性 步骤最简单,但是是危险属性,不推荐使用,项目中实在没有头绪,可以使用它应急 通过useMemo计算得到新的状态值,赋值给dangerouslySetInnerHTML属性的__html 关键代码: const [state1, setState1] useSt…...

重塑在线软件开发新纪元:集成高效安全特性,深度解析与评估会员与促销管理系统的系统架构设计

案例 阅读以下关于软件架构设计与评估的叙述&#xff0c;回答问题1和问题2。 【题目】 某电子商务公司拟升级其会员与促销管理系统&#xff0c;向用户提供个性化服务&#xff0c;提高用户的粘性。在项目立项之初&#xff0c;公司领导层一致认为本次升级的主要目标是提升会员管…...

多层感知机的从零实现与softmax的从零实现(真·0000零基础)

今天再读zh.d2l书&#xff08;4.2. 多层感知机的从零开始实现 — 动手学深度学习 2.0.0 documentation&#xff09;&#xff0c; 看了关于多层感知机的从零实现与softmax的从零实现 目录 mlp从零实现&#xff0c; 点击“paddle”的代码 点击“torch”的代码 训练 参数解…...

【Rust练习】18.特征 Trait

练习题来自&#xff1a;https://practice-zh.course.rs/generics-traits/traits.html 1 // 完成两个 impl 语句块 // 不要修改 main 中的代码 trait Hello {fn say_hi(&self) -> String {String::from("hi")}fn say_something(&self) -> String; }str…...

【自动化测试之oracle数据库】MacOs如何安装oracle- client

操作系统为Mac OS&#xff0c;本地在pycharm上跑自动化脚本时&#xff0c;因为有操作oracle数据库的部分&#xff0c;所以需要安装oracle数据库的客户端&#xff0c;并install cx_oracle,本文主要介绍如何在macOS上完成安装&#xff0c;并在python自动化测试代码中配置&#xf…...

Spring MVC的MultipartFile

定义 MultipartFile接口是Spring MVC中用来处理上传文件的接口&#xff0c;它提供了访问上传文件内容、文件名称、文件大小等信息的方法。 源码&#xff1a; package org.springframework.web.multipart;import java.io.File; import java.io.IOException; import java.io.I…...

●Leetcode| 242.有效的字母异位词 ● 349. 两个数组的交集 ● 202. 快乐数● 1. 两数之和

242,该题目中数组范围比较短&#xff0c;可以数组使用并不会占太多的空间&#xff0c;利用数组的映射&#xff0c;查找到自己所需要的字符 class Solution { public:bool isAnagram(string s, string t) {int record[26] {0};for(int i0;i<s.size();i){record[s[i] - a];/…...

关于算法的时间复杂度和空间复杂度的分析

由于最近开始准备蓝桥杯(python组)&#xff0c;开始对编程基础进行一些复习&#xff0c;当我发现蓝桥对大多数题目程序运行时间及大小有要求时&#xff0c;我知道我不得不考虑性能问题&#xff0c;而不是能跑就行&#x1f913; 写下这篇文章希望对其他同志有帮助吧 什么是算法…...

深入浅出 C++ STL:解锁高效编程的秘密武器

引言 C 标准模板库&#xff08;STL&#xff09;是现代 C 的核心部分之一&#xff0c;为开发者提供了丰富的预定义数据结构和算法&#xff0c;极大地提升了编程效率和代码的可读性。理解和掌握 STL 对于 C 开发者来说至关重要。以下是对 STL 的详细介绍&#xff0c;涵盖其基础知…...

2024年1024程序人生总结

2024-1024 0.大环境0.1.经济0.2.战争 1.我的程序人生1.1.游戏 2.节日祝福 0.大环境 今年的1024最大的感触就是没有节日氛围&#xff0c;往年公司还会准备节日礼物&#xff0c;今年没有&#xff0c;由此可见大环境有多么糟糕。 除此之外&#xff0c;就是到公司应聘的程序员越来…...

【p2p、分布式,区块链笔记 分布式容错算法】: 拜占庭将军问题+实用拜占庭容错算法PBFT

papercodehttps://pmg.csail.mit.edu/papers/osdi99.pdfhttps://github.com/luckydonald/pbft 其他相关实现&#xff1a;This is an implementation of the Pracltical Byzantine Fault Tolerance protocol using PythonAn implementation of the PBFT consensus algorithm us…...

鸿蒙NEXT开发-应用数据持久化之用户首选项(基于最新api12稳定版)

注意&#xff1a;博主有个鸿蒙专栏&#xff0c;里面从上到下有关于鸿蒙next的教学文档&#xff0c;大家感兴趣可以学习下 如果大家觉得博主文章写的好的话&#xff0c;可以点下关注&#xff0c;博主会一直更新鸿蒙next相关知识 专栏地址: https://blog.csdn.net/qq_56760790/…...

人工智能_神经网络103_感知机_感知机工作原理_感知机具备学习能力_在学习过程中自我调整权重_优化效果_多元线性回归_逻辑回归---人工智能工作笔记0228

由于之前一直对神经网络不是特别清楚,尤其是对神经网络中的一些具体的概念,包括循环,神经网络卷积神经网络以及他们具体的作用,都是应用于什么方向不是特别清楚,所以现在我们来做教程来具体明确一下。 当然在机器学习之后还有深度学习,然后在深度学习中对各种神经网络的…...

WISE:重新思考大语言模型的终身模型编辑与知识记忆机制

论文地址&#xff1a;https://arxiv.org/abs/2405.14768https://arxiv.org/abs/2405.14768 1. 概述 随着世界知识的不断变化&#xff0c;大语言模型&#xff08;LLMs&#xff09;需要及时更新&#xff0c;纠正其生成的虚假信息或错误响应。这种持续的知识更新被称为终身模型编…...

KubeSphere 容器平台高可用:环境搭建与可视化操作指南

Linux_k8s篇 欢迎来到Linux的世界&#xff0c;看笔记好好学多敲多打&#xff0c;每个人都是大神&#xff01; 题目&#xff1a;KubeSphere 容器平台高可用&#xff1a;环境搭建与可视化操作指南 版本号: 1.0,0 作者: 老王要学习 日期: 2025.06.05 适用环境: Ubuntu22 文档说…...

(十)学生端搭建

本次旨在将之前的已完成的部分功能进行拼装到学生端&#xff0c;同时完善学生端的构建。本次工作主要包括&#xff1a; 1.学生端整体界面布局 2.模拟考场与部分个人画像流程的串联 3.整体学生端逻辑 一、学生端 在主界面可以选择自己的用户角色 选择学生则进入学生登录界面…...

江苏艾立泰跨国资源接力:废料变黄金的绿色供应链革命

在华东塑料包装行业面临限塑令深度调整的背景下&#xff0c;江苏艾立泰以一场跨国资源接力的创新实践&#xff0c;重新定义了绿色供应链的边界。 跨国回收网络&#xff1a;废料变黄金的全球棋局 艾立泰在欧洲、东南亚建立再生塑料回收点&#xff0c;将海外废弃包装箱通过标准…...

Frozen-Flask :将 Flask 应用“冻结”为静态文件

Frozen-Flask 是一个用于将 Flask 应用“冻结”为静态文件的 Python 扩展。它的核心用途是&#xff1a;将一个 Flask Web 应用生成成纯静态 HTML 文件&#xff0c;从而可以部署到静态网站托管服务上&#xff0c;如 GitHub Pages、Netlify 或任何支持静态文件的网站服务器。 &am…...

Spring AI与Spring Modulith核心技术解析

Spring AI核心架构解析 Spring AI&#xff08;https://spring.io/projects/spring-ai&#xff09;作为Spring生态中的AI集成框架&#xff0c;其核心设计理念是通过模块化架构降低AI应用的开发复杂度。与Python生态中的LangChain/LlamaIndex等工具类似&#xff0c;但特别为多语…...

使用Matplotlib创建炫酷的3D散点图:数据可视化的新维度

文章目录 基础实现代码代码解析进阶技巧1. 自定义点的大小和颜色2. 添加图例和样式美化3. 真实数据应用示例实用技巧与注意事项完整示例(带样式)应用场景在数据科学和可视化领域,三维图形能为我们提供更丰富的数据洞察。本文将手把手教你如何使用Python的Matplotlib库创建引…...

HashMap中的put方法执行流程(流程图)

1 put操作整体流程 HashMap 的 put 操作是其最核心的功能之一。在 JDK 1.8 及以后版本中&#xff0c;其主要逻辑封装在 putVal 这个内部方法中。整个过程大致如下&#xff1a; 初始判断与哈希计算&#xff1a; 首先&#xff0c;putVal 方法会检查当前的 table&#xff08;也就…...

C++ 设计模式 《小明的奶茶加料风波》

&#x1f468;‍&#x1f393; 模式名称&#xff1a;装饰器模式&#xff08;Decorator Pattern&#xff09; &#x1f466; 小明最近上线了校园奶茶配送功能&#xff0c;业务火爆&#xff0c;大家都在加料&#xff1a; 有的同学要加波霸 &#x1f7e4;&#xff0c;有的要加椰果…...

springboot 日志类切面,接口成功记录日志,失败不记录

springboot 日志类切面&#xff0c;接口成功记录日志&#xff0c;失败不记录 自定义一个注解方法 import java.lang.annotation.ElementType; import java.lang.annotation.Retention; import java.lang.annotation.RetentionPolicy; import java.lang.annotation.Target;/***…...

git: early EOF

macOS报错&#xff1a; Initialized empty Git repository in /usr/local/Homebrew/Library/Taps/homebrew/homebrew-core/.git/ remote: Enumerating objects: 2691797, done. remote: Counting objects: 100% (1760/1760), done. remote: Compressing objects: 100% (636/636…...