当前位置: 首页 > news >正文

【代码随想录Day57】图论Part08

拓扑排序精讲

题目链接/文章讲解:代码随想录

import java.util.*;public class Main {public static void main(String[] args) {Scanner scanner = new Scanner(System.in);// 读取文件数量 n 和依赖关系数量 mint n = scanner.nextInt();int m = scanner.nextInt();// 初始化记录文件依赖关系的列表和每个文件的入度数组List<List<Integer>> umap = new ArrayList<>(n); // 记录文件依赖关系int[] inDegree = new int[n]; // 记录每个文件的入度// 初始化 umap,每个文件的依赖列表for (int i = 0; i < n; i++) {umap.add(new ArrayList<>());}// 读取依赖关系for (int i = 0; i < m; i++) {int s = scanner.nextInt(); // 依赖的源文件int t = scanner.nextInt(); // 依赖的目标文件umap.get(s).add(t); // 记录s指向哪些文件inDegree[t]++; // t的入度加一,表示有一个文件依赖于t}// 使用 ArrayDeque 作为队列来进行拓扑排序Deque<Integer> queue = new ArrayDeque<>();// 将所有入度为0的文件加入队列for (int i = 0; i < n; i++) {if (inDegree[i] == 0) {queue.add(i); // 入度为0的文件可以作为开头}}// 存储拓扑排序结果List<Integer> result = new ArrayList<>();// 拓扑排序过程while (!queue.isEmpty()) {int cur = queue.poll(); // 当前选中的文件result.add(cur); // 将当前文件加入结果列表// 遍历当前文件指向的所有文件for (int file : umap.get(cur)) {inDegree[file]--; // 当前文件指向的文件入度-1if (inDegree[file] == 0) {queue.add(file); // 如果入度为0,则加入队列}}}// 检查是否完成了拓扑排序if (result.size() == n) {// 如果结果列表的大小等于文件数量,说明拓扑排序成功StringBuilder output = new StringBuilder();for (int i = 0; i < result.size(); i++) {output.append(result.get(i)); // 添加文件到输出if (i < result.size() - 1) {output.append(" "); // 添加空格分隔文件}}System.out.println(output); // 输出最终结果} else {// 如果结果列表的大小不等于文件数量,说明存在循环依赖System.out.println(-1);}}
}

dijkstra(朴素版)精讲

题目链接/文章讲解:代码随想录

import java.util.Arrays;
import java.util.Scanner;public class Main {public static void main(String[] args) {Scanner scanner = new Scanner(System.in);// 读取节点数量 n 和边的数量 mint n = scanner.nextInt();int m = scanner.nextInt();// 初始化图的邻接矩阵,使用 Integer.MAX_VALUE 表示无穷大int[][] grid = new int[n + 1][n + 1];for (int i = 1; i <= n; i++) {Arrays.fill(grid[i], Integer.MAX_VALUE);}// 读取边的信息,建立邻接矩阵for (int i = 0; i < m; i++) {int p1 = scanner.nextInt();int p2 = scanner.nextInt();int val = scanner.nextInt();// 存储边的权值,假设图是有向图grid[p1][p2] = Math.min(grid[p1][p2], val); // 保证边的权值最小}int start = 1; // 起始点int end = n;   // 终点// 存储从起始点到每个节点的最短距离int[] minDist = new int[n + 1];Arrays.fill(minDist, Integer.MAX_VALUE);minDist[start] = 0; // 起始点到自身的距离为0// 记录每个节点是否被访问过boolean[] visited = new boolean[n + 1];// Dijkstra 算法主循环for (int i = 1; i <= n; i++) {// 1. 找到未访问的节点中最小距离的节点int cur = -1;int minVal = Integer.MAX_VALUE;for (int v = 1; v <= n; ++v) {if (!visited[v] && minDist[v] < minVal) {minVal = minDist[v];cur = v; // 记录当前节点}}// 如果所有节点都已访问,或剩下的节点不可达,则退出循环if (cur == -1) break;visited[cur] = true; // 2. 标记当前节点已被访问// 3. 更新未访问节点到起始点的距离for (int v = 1; v <= n; v++) {// 如果有边且未访问,更新最短距离if (!visited[v] && grid[cur][v] != Integer.MAX_VALUE) {minDist[v] = Math.min(minDist[v], minDist[cur] + grid[cur][v]);}}}// 输出结果System.out.println(minDist[end] == Integer.MAX_VALUE ? -1 : minDist[end]);}
}

相关文章:

【代码随想录Day57】图论Part08

拓扑排序精讲 题目链接/文章讲解&#xff1a;代码随想录 import java.util.*;public class Main {public static void main(String[] args) {Scanner scanner new Scanner(System.in);// 读取文件数量 n 和依赖关系数量 mint n scanner.nextInt();int m scanner.nextInt()…...

记录一次mmpretrain训练数据并转onnx推理

目录 1.前言 2.代码 3.数据形态【分类用】 4.配置文件 5.训练 6.测试-分析-混淆矩阵等等&#xff0c;测试图片效果等 7.导出onnx 8.onnx推理 9.docker环境简单补充 1.前言 好久没有做图像分类了&#xff0c;于是想用商汤的mmclassification快速搞一波&#xff0c;发现已…...

shodan5,参数使用,批量查找Mongodb未授权登录,jenkins批量挖掘

查找美国安全局漏洞 nww.nsa.gov&#xff08;美国安全局官方网站) net参数使用 搜索指定的ip网段 shodan search --limit 10 --fields ip_str,port net:208.88.84.0/24 (老美国家安全局的一个网段)可能直接访问不太行&#xff0c;可以使用host参数&#xff0c;得到域名再去…...

telnet 密码模式 访问路由器

telnet 密码访问华为路由器 模拟被访问路由 sy [Huawei]int g0/0/0 //选中 g0/0/0端口 [Huawei-GigabitEthernet0/0/0]ip add 192.168.1.1 24 //设置端口ip [Huawei]user-interface vty 0 4 //配置vty [Huawei-ui-vty0-4]set authentication password cipher huawei123 //设置…...

文心一言 VS 讯飞星火 VS chatgpt (380)-- 算法导论24.4 12题

十二、给出一个有效算法来解决 A x ⩽ b Ax⩽b Ax⩽b 的差分约束系统&#xff0c;这里 b b b 的所有元素为实数&#xff0c;而变量 x i x_i xi​ 中某个给定的子集是整数。如果要写代码&#xff0c;请用go语言。 文心一言&#xff1a; 差分约束系统问题通常用于解决带有约…...

Unity自定义数组在Inspector窗口的显示方式

了解 单行高度:EditorGUIUtility.singleLineHeight获取 PropertyField 控件所需的高度:EditorGUI.GetPropertyHeight属性是否在Inspector窗口展开&#xff1a;SerializedProperty.isExpanded可重新排序列表类&#xff1a;ReorderableList绘制纯色矩形&#xff1a;EditorGUI.Dr…...

ERC论文阅读(03)--SPCL论文阅读笔记(2024-10-29)

SPCL论文阅读笔记 论文中心思想 这篇论文是研究ERC任务的论文&#xff0c;作者提出了监督原型对比学习的方法用于ERC任务。 论文 EMNLP2022 paper “Supervised Prototypical Contrastive Learning for Emotion Recognition in Conversation” 现存问题 现存的使用监督对…...

Straightforward Layer-wise Pruning for More Efficient Visual Adaptation

对于模型中冗余的参数&#xff0c;一个常见的方法是通过结构化剪枝方法减少参数容量。例如&#xff0c;基于幅度值和基于梯度的剪枝方法。尽管这些方法在传统训练上通用性&#xff0c;本文关注的PETL迁移有两个不可避免的问题&#xff1a; 显著增加了模型存储负担。由于不同的…...

喜讯 | 创邻科技杭州电子科技大学联合实验室揭牌成立!

近日&#xff0c;杭州电子科技大学图书情报专业硕士行业导师聘任仪式暨杭电-创邻图技术与数字化联合实验室&#xff08;图书档案文物数字云联合研发中心&#xff09;揭牌仪式在杭州电子科技大学隆重举行。杭州电子科技大学原副校长吕金海、研究生院副院长潘建江&#xff0c;科研…...

海外媒体发稿:如何打造媒体发稿策略

新闻媒体的发稿推广策略对于提升品牌知名度、吸引流量以及增加收入非常重要。本文将介绍一套在21天内打造爆款新闻媒体发稿推广策略的方法。 第一天至第七天&#xff1a;明确目标和定位 在这个阶段&#xff0c;你需要明确你的目标和定位&#xff0c;以便为你的新闻媒体建立一个…...

PyTorch模型保存与加载

1.保存与加载的概念(序列化与反序列化) 模型训练完毕之后,肯定想要把它保存下来,供以后使用,不需要再次去训练。 那么在pytorch中如何把训练好的模型,保存,保存之后又如何加载呢? 这就用需要序列化与反序列化,序列化与反序列化的概念如下图所示: 因为在内…...

CH569开发前的测试

为了玩转准备Ch569的开发工作 &#xff0c;准备了如下硬件和软件&#xff1a; 硬件 1.官方的 Ch569 开发板&#xff0c;官方买到的是两块插接在一起的&#xff1b;除了HSPI接口那里的电阻&#xff0c;这两块可以说是一样的。也意味着两块板子的开发也需要烧录两次&#xff1b…...

MySQL中表的外连接和内连接

内连接和外连接 ​ 表的连接分为内连接和外连接&#xff0c;内连接就是将需要连接的表形成笛卡尔积筛选&#xff1b;外连接分为左外连接和右外连接&#xff0c;左外连接为左侧的表需要完全显示&#xff0c;右外连接为右侧的表现需要完全显示。 文章目录 内连接和外连接内连接外…...

Ubuntu 上安装 Redmine 5.1 指南

文章目录 官网安装文档&#xff1a;命令步骤相关介绍GemRubyRailsBundler 安装 Redmine更新系统包列表和软件包&#xff1a;安装必要的依赖&#xff1a;安装 Ruby&#xff1a;安装 bundler下载 Redmine 源代码&#xff1a;安装 MySQL配置 Redmine 的数据库配置文件&#xff1a;…...

从变量的角度理解 Hooks , 变得更简单了

从变量角度理解Hooks 在React的世界里&#xff0c;Hooks的引入为函数式组件带来了前所未有的灵活性和能力。它们让我们得以完全摆脱class式的写法&#xff0c;在函数式组件中完成生命周期管理、状态管理、逻辑复用等几乎全部组件开发工作。这次&#xff0c;我们就从变量的角度…...

LabVIEW Modbus通讯稳定性提升

在LabVIEW开发Modbus通讯程序时&#xff0c;通讯不稳定是一个常见问题&#xff0c;可能导致数据丢失、延迟或错误。为了确保通讯的可靠性&#xff0c;可以从多个角度进行优化&#xff0c;以下是一些有效的解决方案&#xff0c;结合实际案例进行分析。 1. 优化通讯参数设置 通讯…...

(8) cuda分析工具

文章目录 Nvidia GPU性能分析工具Nsight SystemNvidia GPU性能分析工具Nsight System Nvidia GPU性能分析工具Nsight System NVIDIA Nsight Systems是一个系统级的性能分析工具&#xff0c;用于分析和优化整个CUDA应用程序或系统的性能。它可以提供对应用程序整体性能的全面见…...

C语言 | Leetcode C语言题解之第517题超级洗衣机

题目&#xff1a; 题解&#xff1a; int findMinMoves(int* machines, int machinesSize){int sum0;for(int i0;i<machinesSize;i){summachines[i];}if(sum%machinesSize!0){return -1;}int psum/machinesSize;int ans0;int cur0;for(int i0;i<machinesSize;i){cur(mac…...

Java多线程编程基础

目录 编写第一个多线程程序 1. 方式一 : 继承Thread类, 重写run方法 2. 方式二: 实现Runnable接口, 重写run方法 3. 方式三: 使用Lambda表达式 [匿名内部类] [Lambda表达式] 在上个文章中, 我们了解了进程和线程的相关概念. 那么, 在Java中, 我们如何进行多线程编程呢? …...

刷代随有感(134):单调栈——下一个更大元素I(难点涉及哈希表与单调栈的结合)

单调栈处理的是下标&#xff01; 题干&#xff1a; 代码&#xff1a; class Solution { public:vector<int> nextGreaterElement(vector<int>& nums1, vector<int>& nums2) {stack<int>ddst;unordered_map<int,int>umap;vector<int…...

[特殊字符] 智能合约中的数据是如何在区块链中保持一致的?

&#x1f9e0; 智能合约中的数据是如何在区块链中保持一致的&#xff1f; 为什么所有区块链节点都能得出相同结果&#xff1f;合约调用这么复杂&#xff0c;状态真能保持一致吗&#xff1f;本篇带你从底层视角理解“状态一致性”的真相。 一、智能合约的数据存储在哪里&#xf…...

深度学习在微纳光子学中的应用

深度学习在微纳光子学中的主要应用方向 深度学习与微纳光子学的结合主要集中在以下几个方向&#xff1a; 逆向设计 通过神经网络快速预测微纳结构的光学响应&#xff0c;替代传统耗时的数值模拟方法。例如设计超表面、光子晶体等结构。 特征提取与优化 从复杂的光学数据中自…...

uni-app学习笔记二十二---使用vite.config.js全局导入常用依赖

在前面的练习中&#xff0c;每个页面需要使用ref&#xff0c;onShow等生命周期钩子函数时都需要像下面这样导入 import {onMounted, ref} from "vue" 如果不想每个页面都导入&#xff0c;需要使用node.js命令npm安装unplugin-auto-import npm install unplugin-au…...

SCAU期末笔记 - 数据分析与数据挖掘题库解析

这门怎么题库答案不全啊日 来简单学一下子来 一、选择题&#xff08;可多选&#xff09; 将原始数据进行集成、变换、维度规约、数值规约是在以下哪个步骤的任务?(C) A. 频繁模式挖掘 B.分类和预测 C.数据预处理 D.数据流挖掘 A. 频繁模式挖掘&#xff1a;专注于发现数据中…...

selenium学习实战【Python爬虫】

selenium学习实战【Python爬虫】 文章目录 selenium学习实战【Python爬虫】一、声明二、学习目标三、安装依赖3.1 安装selenium库3.2 安装浏览器驱动3.2.1 查看Edge版本3.2.2 驱动安装 四、代码讲解4.1 配置浏览器4.2 加载更多4.3 寻找内容4.4 完整代码 五、报告文件爬取5.1 提…...

Mobile ALOHA全身模仿学习

一、题目 Mobile ALOHA&#xff1a;通过低成本全身远程操作学习双手移动操作 传统模仿学习&#xff08;Imitation Learning&#xff09;缺点&#xff1a;聚焦与桌面操作&#xff0c;缺乏通用任务所需的移动性和灵活性 本论文优点&#xff1a;&#xff08;1&#xff09;在ALOHA…...

深入浅出深度学习基础:从感知机到全连接神经网络的核心原理与应用

文章目录 前言一、感知机 (Perceptron)1.1 基础介绍1.1.1 感知机是什么&#xff1f;1.1.2 感知机的工作原理 1.2 感知机的简单应用&#xff1a;基本逻辑门1.2.1 逻辑与 (Logic AND)1.2.2 逻辑或 (Logic OR)1.2.3 逻辑与非 (Logic NAND) 1.3 感知机的实现1.3.1 简单实现 (基于阈…...

纯 Java 项目(非 SpringBoot)集成 Mybatis-Plus 和 Mybatis-Plus-Join

纯 Java 项目&#xff08;非 SpringBoot&#xff09;集成 Mybatis-Plus 和 Mybatis-Plus-Join 1、依赖1.1、依赖版本1.2、pom.xml 2、代码2.1、SqlSession 构造器2.2、MybatisPlus代码生成器2.3、获取 config.yml 配置2.3.1、config.yml2.3.2、项目配置类 2.4、ftl 模板2.4.1、…...

从物理机到云原生:全面解析计算虚拟化技术的演进与应用

前言&#xff1a;我的虚拟化技术探索之旅 我最早接触"虚拟机"的概念是从Java开始的——JVM&#xff08;Java Virtual Machine&#xff09;让"一次编写&#xff0c;到处运行"成为可能。这个软件层面的虚拟化让我着迷&#xff0c;但直到后来接触VMware和Doc…...

【Kafka】Kafka从入门到实战:构建高吞吐量分布式消息系统

Kafka从入门到实战:构建高吞吐量分布式消息系统 一、Kafka概述 Apache Kafka是一个分布式流处理平台,最初由LinkedIn开发,后成为Apache顶级项目。它被设计用于高吞吐量、低延迟的消息处理,能够处理来自多个生产者的海量数据,并将这些数据实时传递给消费者。 Kafka核心特…...