当前位置: 首页 > news >正文

计算机低能儿从0刷leetcode | 33.搜索旋转排列数组

题目:33. 搜索旋转排序数组

思路:看到时间复杂度要求是O(log N)很容易想到二分查找,普通的二分查找我们已经掌握,本题中的数组可以看作由两个分别升序的数组拼成,在完全升序的部分中进行二分查找是容易的,因此我们每次找到mid后,判断mid左侧为完全升序还是右侧为完全升序,比如,若mid左侧为完全升序,此时如果target的范围在这当中(即nums[i]-nums[mid]中),那么就去左边寻找,否则都去右边。

因此,主要思路为以下几部分:

1、判断哪一侧是完全升序的。nums[l]<nums[mid]则左侧完全升序、否则是右侧。

2、若左侧有序且target在这个范围中,就去左边寻找,否则去右边。

3、若右侧有序且target在这个范围中,就去右边寻找,否则去左边。

4、若找不到则返回-1.

代码:

class Solution {
public:int search(vector<int>& nums, int target) {int len=nums.size();int l=0,r=len-1;while(l<=r){int mid = (l+r)/2;if(target==nums[mid]) return mid;if(nums[l]<=nums[mid]){if(target>=nums[l]&&target<nums[mid])  r=mid-1;else l=mid+1;}else if(target>nums[mid]&&target<=nums[r]) l=1+mid;else r=mid-1; }return -1;}
};

补充:

在二分法中,左右指针的移动和循环条件的细微改变都会引起结果的不同。比如循环条件是while(l<r) 还是 while(l<=r),指针移动方式是l=mid,还是l=mid+1。我没有深入研究原理,只是观察并且猜测while(l<=r)与l=mid+1搭配使用是其中一种正确的方式,也许可以死板地记忆以下。

相关文章:

计算机低能儿从0刷leetcode | 33.搜索旋转排列数组

题目&#xff1a;33. 搜索旋转排序数组 思路&#xff1a;看到时间复杂度要求是O(log N)很容易想到二分查找&#xff0c;普通的二分查找我们已经掌握&#xff0c;本题中的数组可以看作由两个分别升序的数组拼成&#xff0c;在完全升序的部分中进行二分查找是容易的&#xff0c;…...

SpringBoot+VUE2完成WebSocket聊天(数据入库)

下载依赖 <!-- websocket --><dependency><groupId>org.springframework.boot</groupId><artifactId>spring-boot-starter-websocket</artifactId></dependency><!-- MybatisPlus --><dependency><groupId>com.ba…...

理解 CSS 中的绝对定位与 Flex 布局混用

理解 CSS 中的绝对定位与 Flex 布局混用 在现代网页设计中&#xff0c;CSS 布局技术如 flex 和绝对定位被广泛使用。然而&#xff0c;这两者结合使用时&#xff0c;可能会导致一些意想不到的布局问题。本文将探讨如何正确使用绝对定位元素&#xff0c;避免它们受到 flex 布局的…...

Redis 事务 问题

前言 相关系列 《Redis & 目录》《Redis & 事务 & 源码》《Redis & 事务 & 总结》《Redis & 事务 & 问题》 参考文献 《Redis事务详解》 Redis事务是什么&#xff1f; 标准的事务是指执行时具备原子性/一致性/隔离性/持久性的一系列操作。…...

Cpp学习手册-进阶学习

C标准库和C20新特性 C标准库概览&#xff1a; 核心库组件介绍&#xff1a; 容器&#xff1a; C 标准库提供了多种容器&#xff0c;它们各有特点&#xff0c;适用于不同的应用场景。 std::vector&#xff1a; vector&#xff1a;动态数组&#xff0c;支持快速随机访问。 #in…...

代码随想录-字符串-反转字符串中的单词

题目 题解 法一:纯粹为了做出本题&#xff0c;暴力解 没有技巧全是感情 class Solution {public String reverseWords(String s) {//首先去除首尾空格s s.trim();String[] strs s.split("\\s");StringBuilder sb new StringBuilder();//定义一个公共的字符反转…...

勒索软件通过易受攻击的 Cyber​​Panel 实例攻击网络托管服务器

一个威胁行为者&#xff08;或可能多个&#xff09;使用 PSAUX 和其他勒索软件攻击了大约 22,000 个易受攻击的 Cyber​​Panel 实例以及运行该实例的服务器上的加密文件。 PSAUX 赎金记录&#xff08;来源&#xff1a;LeakIX&#xff09; Cyber​​Panel 漏洞 Cyber​​Pane…...

Open WebUI + openai API / vllm API ,实战部署教程

介绍Open WebUI + Ollama 的使用: https://www.dong-blog.fun/post/1796 介绍vllm 的使用:https://www.dong-blog.fun/post/1781 介绍 Ollama 的使用: https://www.dong-blog.fun/post/1797 本篇博客玩个花的,Open WebUI 本身可以兼容openai 的api, 那来尝试一下。 仅供…...

InsuranceclaimsController

目录 1、 InsuranceclaimsController 1.1、 保险理赔结算 1.2、 生成预约单号 1.3、 保存索赔表 InsuranceclaimsController using QXQPS.Models; using QXQPS.Vo; using System; using System.Collections; using System.Collections.Generic; using System.Li…...

如何成为开源代码库Dify的contributor:解决issue并提交PR

前言 Dify 是一个开源的大语言模型&#xff08;LLM&#xff09;应用开发平台&#xff0c;它融合了后端即服务&#xff08;Backend as Service&#xff09;和LLMOps的理念&#xff0c;旨在简化和加速生成式AI应用的创建和部署。Dify提供了一个用户友好的界面和一系列强大的工具…...

SQL进阶技巧:巧用异或运算解决经典换座位问题

目录 0 问题描述 1 数据准备 2 问题分析 2.1 什么是异或 2.2异或有什么特性? 2.3 异或应用 2.4 本问题采用异或SQL解决方案 3 小结 0 问题描述 表 seat中有2个字段id和student id 是该表的主键(唯一值)列,student表示学生姓名。 该表的每一行都表示学生的姓名和 ID。…...

【MySQL】 运维篇—数据库监控:使用MySQL内置工具(如SHOW命令、INFORMATION_SCHEMA)进行监控

随着应用程序的增长&#xff0c;数据库的性能和稳定性变得至关重要。监控数据库的状态和性能可以帮助数据库管理员&#xff08;DBA&#xff09;及时发现问题&#xff0c;进行故障排查&#xff0c;并优化数据库的运行效率。通过监控工具&#xff0c;DBA可以获取实时的性能指标、…...

【温酒笔记】DMA

参考文档&#xff1a;野火STM32F103 1. Direct Memory Access-直接内存访问 DMA控制器独立于内核 是一个单独的外设 DMA1有7个通道DMA2有5个通道DMA有四个等级&#xff0c;非常高&#xff0c;高&#xff0c;中&#xff0c;低四个优先级如果优先等级相同&#xff0c;通道编号越…...

力扣判断字符是否唯一(位运算)

文章目录 给一个数n,判断它的二进制位中第x位是0还是1(从0开始计数)将一个数n的二进制位第X位修改为1(从0开始计数)将一个数n的二进制第x位修改为0(从0开始计数)提取一个数n二进制中最右侧的1去掉一个数n二进制表示中最右侧的1 今天我们通过判断字符是否唯一这个题来了解位运算…...

GPU和CPU区别?为什么挖矿、大模型都用GPU?

GPU(图形处理单元)和CPU(中央处理单元)是计算机中两种不同类型的处理器&#xff0c;它们在设计和功能上有很大的区别。 CPU是计算机的大脑&#xff0c;专门用于执行各种通用任务&#xff0c;如操作系统管理、数据处理、多任务处理等。它的架构设计旨在适应多种任务&#xff0c…...

新兴斗篷cloak技术,你了解吗?

随着互联网技术的飞速发展&#xff0c;网络营销领域也经历了翻天覆地的变革。 从最早的网络横幅广告到如今主流的搜索引擎和社交媒体营销&#xff0c;广告形式变得越来越多样。 其中&#xff0c;搜索引擎广告一直以其精准投放而备受青睐&#xff0c;但近年来&#xff0c;一项名…...

【抽代复习笔记】34-群(二十八):不变子群的几道例题

例1&#xff1a;证明&#xff0c;交换群的任何子群都是不变子群。 证&#xff1a;设(G,o)是交换群&#xff0c;H≤G&#xff0c; 对任意的a∈G&#xff0c;显然都有aH {a o h|h∈H} {h o a|h∈H} Ha。 所以H⊿G。 【注&#xff1a;规范的不变子群符号是一个顶角指向左边…...

Chrome和Firefox如何保护用户的浏览数据

在当今数字化时代&#xff0c;保护用户的浏览数据变得尤为重要。浏览器作为我们日常上网的主要工具&#xff0c;其安全性直接关系到个人信息的保密性。本文将详细介绍Chrome和Firefox这两款主流浏览器如何通过一系列功能来保护用户的浏览数据。&#xff08;本文由https://chrom…...

CentOS 7镜像下载

新版本系统镜像下载&#xff08;当前最新是CentOS 7.4版本&#xff09; CentOS官网 官网地址 http://isoredirect.centos.org/centos/7.4.1708/isos/x86_64/ http://mirror.centos.org/centos/7/isos/ 国内的华为云&#xff0c;超级快&#xff1a;https://mirrors.huaweiclou…...

opencv-windows-cmake-Mingw-w64,编译opencv源码

Windows_MinGW_64_OpenCV在线编译动态库,并使用在C项目: (mingw-w64 cmakegithub actions方案) 修改版opencv在线编译: 加入opencv-contrib库, 一起编译生成动态库,在线编译好的opencv动态库,可以下载使用.验证opencv动态库是否可用的模板项目,测试opencv动态库是否可用的模板…...

CVPR 2025 MIMO: 支持视觉指代和像素grounding 的医学视觉语言模型

CVPR 2025 | MIMO&#xff1a;支持视觉指代和像素对齐的医学视觉语言模型 论文信息 标题&#xff1a;MIMO: A medical vision language model with visual referring multimodal input and pixel grounding multimodal output作者&#xff1a;Yanyuan Chen, Dexuan Xu, Yu Hu…...

<6>-MySQL表的增删查改

目录 一&#xff0c;create&#xff08;创建表&#xff09; 二&#xff0c;retrieve&#xff08;查询表&#xff09; 1&#xff0c;select列 2&#xff0c;where条件 三&#xff0c;update&#xff08;更新表&#xff09; 四&#xff0c;delete&#xff08;删除表&#xf…...

模型参数、模型存储精度、参数与显存

模型参数量衡量单位 M&#xff1a;百万&#xff08;Million&#xff09; B&#xff1a;十亿&#xff08;Billion&#xff09; 1 B 1000 M 1B 1000M 1B1000M 参数存储精度 模型参数是固定的&#xff0c;但是一个参数所表示多少字节不一定&#xff0c;需要看这个参数以什么…...

在HarmonyOS ArkTS ArkUI-X 5.0及以上版本中,手势开发全攻略:

在 HarmonyOS 应用开发中&#xff0c;手势交互是连接用户与设备的核心纽带。ArkTS 框架提供了丰富的手势处理能力&#xff0c;既支持点击、长按、拖拽等基础单一手势的精细控制&#xff0c;也能通过多种绑定策略解决父子组件的手势竞争问题。本文将结合官方开发文档&#xff0c…...

【网络安全产品大调研系列】2. 体验漏洞扫描

前言 2023 年漏洞扫描服务市场规模预计为 3.06&#xff08;十亿美元&#xff09;。漏洞扫描服务市场行业预计将从 2024 年的 3.48&#xff08;十亿美元&#xff09;增长到 2032 年的 9.54&#xff08;十亿美元&#xff09;。预测期内漏洞扫描服务市场 CAGR&#xff08;增长率&…...

基于数字孪生的水厂可视化平台建设:架构与实践

分享大纲&#xff1a; 1、数字孪生水厂可视化平台建设背景 2、数字孪生水厂可视化平台建设架构 3、数字孪生水厂可视化平台建设成效 近几年&#xff0c;数字孪生水厂的建设开展的如火如荼。作为提升水厂管理效率、优化资源的调度手段&#xff0c;基于数字孪生的水厂可视化平台的…...

现代密码学 | 椭圆曲线密码学—附py代码

Elliptic Curve Cryptography 椭圆曲线密码学&#xff08;ECC&#xff09;是一种基于有限域上椭圆曲线数学特性的公钥加密技术。其核心原理涉及椭圆曲线的代数性质、离散对数问题以及有限域上的运算。 椭圆曲线密码学是多种数字签名算法的基础&#xff0c;例如椭圆曲线数字签…...

什么是EULA和DPA

文章目录 EULA&#xff08;End User License Agreement&#xff09;DPA&#xff08;Data Protection Agreement&#xff09;一、定义与背景二、核心内容三、法律效力与责任四、实际应用与意义 EULA&#xff08;End User License Agreement&#xff09; 定义&#xff1a; EULA即…...

C++八股 —— 单例模式

文章目录 1. 基本概念2. 设计要点3. 实现方式4. 详解懒汉模式 1. 基本概念 线程安全&#xff08;Thread Safety&#xff09; 线程安全是指在多线程环境下&#xff0c;某个函数、类或代码片段能够被多个线程同时调用时&#xff0c;仍能保证数据的一致性和逻辑的正确性&#xf…...

Unity | AmplifyShaderEditor插件基础(第七集:平面波动shader)

目录 一、&#x1f44b;&#x1f3fb;前言 二、&#x1f608;sinx波动的基本原理 三、&#x1f608;波动起来 1.sinx节点介绍 2.vertexPosition 3.集成Vector3 a.节点Append b.连起来 4.波动起来 a.波动的原理 b.时间节点 c.sinx的处理 四、&#x1f30a;波动优化…...