当前位置: 首页 > news >正文

传智杯 第六届-复赛-D

题目描述:

        小红定义两个字符串同构,当且仅当对于i∈[1,n],b[i]−a[i]i∈[1,n],b[i]-a[i]i∈[1,n],b[i]−a[i]是定值。例如,"bacd"和"edfg"是同构的。

        现在小红拿到了一个长度为n的字符串a,她想知道,有多少长度为n的字符串b同时满足以下两个条件:
        1.b的每一位都和a不同。
        2.b和a不同构。

输入描述:

        输入一个仅由英文小写字母组成的字符串,代表字符串a。字符串长度不超过10^5。

输出描述:

        一个整数,代表合法的字符串b的数量。由于答案过大,请对10^9+7取模。

示例1

输入:

a

输出:

0

说明:

任意长度为1的字符串都和"a"同构。

 

示例2

输入:

ab

输出:

601

解题步骤:

        ①输入

        ②计算共有多少个情况的发生:每个位置都会有25中可能,所以是25*n

        ③计算同构的情况:同构情况就是某种位置上的字符不同就对应1种情况,计算同构情况就是计算在该位置上可以取多少个元素,即25-(最大元素-最小元素)

        ④计算最终的情况:即总情况-同构情况

        ⑤输出

注意:

        ①计算total的时候,可能会出现超出字符长度的情况,所以需要提前对其进行取模的操作,而不是最后才进行取模的操作。

代码:

#include<iostream>
#include<string>
#include<math.h>
#define int long long
using namespace std;
signed  main()
{//输入string str;getline(cin, str);//计算共有多少个情况的发生(25^n个),每个位置有25种情况int mod = 1e9 + 7;int n = str.length();   //字符串的长度int total = 1;for (int i = 0;i < n;i++){total = (total * 25) % mod;}//计算同构的情况char mi = str[0];   //最小字符char ma = str[0];    //最大字符for (int i = 1;i < n;i++){mi = min(mi, str[i]);   //找到最小字符ma = max(ma, str[i]);   //找到最大字符}int isomorphism = 25 - (ma - mi);//计算最终的情况	int sum = (total - isomorphism) % mod;//输出cout << sum << endl;system("pause");
}

 

相关文章:

传智杯 第六届-复赛-D

题目描述&#xff1a; 小红定义两个字符串同构&#xff0c;当且仅当对于i∈[1,n],b[i]−a[i]i∈[1,n],b[i]-a[i]i∈[1,n],b[i]−a[i]是定值。例如&#xff0c;"bacd"和"edfg"是同构的。 现在小红拿到了一个长度为n的字符串a&#xff0c;她想知道&a…...

Java - 数组实现大顶堆

题目描述 实现思路 要实现一个堆&#xff0c;我们首先要了解堆的概念。 堆是一种完全二叉树&#xff0c;分为大顶堆和小顶堆。 大顶堆&#xff1a;每个节点的值都大于或等于其子节点的值。 小顶堆&#xff1a;每个节点的值都小于或等于其子节点的值。 完全二叉树&#xff…...

ifuse挂载后,在python代码中访问iOS沙盒目录获取app日志

上一次使用pymobiledevice3&#xff0c;在python代码中访问app的沙盒目录并分析业务日志&#xff0c;在使用过程中发现&#xff0c;在获取app日志的时候速度很慢&#xff0c;执行时间很长&#xff0c;需要30-61秒&#xff0c;所以这次尝试使用libimobiledevic和ifuse&#xff0…...

Windows WSL环境下安装 pytorch +ROCM 支持AMD显卡

官方文档&#xff1a;Install PyTorch for ROCm — Use ROCm on Radeon GPUs 一、操作系统及驱动 windows 下安装WSL 环境( windows subsystem for Linux), 安装ubuntu 22.04环境。 安装 rocm 软件包&#xff1a; sudo apt update wget https://repo.radeon.com/amdgpu-insta…...

uniapp中skymap.html(8100端口)提示未登录的排查与解决方法

问题&#xff1a; 目前账号已经登录&#xff0c;uniapp的其他端口均可以访问到数据&#xff0c;唯独skymap.html中的8100会提示未登录。&#xff08;8100是后端网关gateway端口&#xff09; 分析&#xff1a; 在 skymap.html 中遇到未登录提示的问题&#xff0c;通常是由于该…...

训练模型时梯度出现NAN或者INF(禁用amp的不同level)

判断参数梯度位nan或inf的代码&#xff1a; for name, param in model.named_parameters():if param.grad is not None:if torch.isnan(param.grad).any() or torch.isinf(param.grad).any():print(f"grad layer [{name}] is NaN or Inf") 首先来说可能得原因&…...

Maven核心概念

一、项目对象模型&#xff08;POM&#xff09; 1. 定义 POM&#xff08;Project Object Model&#xff09;是 Maven 项目的核心配置文件&#xff0c;它以 XML 格式描述了项目的基本信息、项目依赖、构建配置等。可以说&#xff0c;POM 是 Maven 理解和处理项目的基础。 2. 基…...

Sonatype Nexus 部署手册

文章目录 一、前言二、软件环境2.1 版本变更&#xff1a;2.1.1 变更存储的原因2.2.2 H2作为存储的注意点 三、资源配置四、开始部署4.1 部署jdk174.2 离线部署nexus4.2.1 下载4.2.2 部署1. 上传到服务器2. 解压3. 添加用户4. 修改启动参数5. 迁移sonatype-work &#xff0c;并授…...

TLV320AIC3104IRHBR 数据手册 一款低功耗立体声音频编解码器 立体声耳机放大器芯片麦克风

TLV320AIC3104 是一款低功耗立体声音频编解码器&#xff0c;具有立体声耳机放大器以及在单端或全差分配置下可编程的多个输入和输出。该器件包括基于寄存器的全面电源控制&#xff0c;可实现立体声 48kHz DAC 回放&#xff0c;在 3.3V 模拟电源电压下的功耗低至 14mW&#xff0…...

(8)结构体、共用体和枚举类型数据

1. 结构体、共用体的定义及区别,typedef 定义别名 结构体的定义 结构体是一种用户自定义的数据类型,它可以将不同类型的数据组合在一起。例如,定义一个表示学生信息的结构体: // 定义结构体类型 struct Student struct Student {char name[20];int age;float score; };共…...

Jedis操作和springboot整合redis

Jedis-springboot整合redis Jedis 引入jedis依赖 注意事项 测试相关数据类型 Key String List set hash zset 案例 spring boot整合redis 引入相关依赖 在application.properties中配置redis 配置 创建redis配置类 创建测试类 Jedis 引入jedis依赖 <depen…...

基于AI大模型的复杂扫描件PDF信息提取与规整

前言 场景大致是会上传一个几十页的扫描件PDF&#xff0c;让AI在当中找出我需要的字段&#xff0c;本文会隐去具体行业信息和具体的AI提示词内容&#xff0c;只分享技术相关内容&#xff0c;请见谅。 AI模型选择 针对我们行业的使用场景&#xff0c;我主要测试了GPT、Claude以…...

为什么https先非对称加密,然后对称加密?

HTTPS之所以先使用非对称加密&#xff0c;然后在对称加密&#xff0c;主要是基于两者在加密效率与安全性方面的特性考虑。 首先&#xff0c;非对称加密具有极高的安全性&#xff0c;因为它使用了公钥和私钥这一对密钥。公钥是公开的&#xff0c;任何人都可以使用它来加密数据&…...

【Coroutines】Full Understanding of Kotlinx.Corutines Framework

文章目录 What is CorutinesDifference between Corutine and ThreadFast UsageSuspend FunctionAdvanced Usage of CoroutineCoroutine EssentialsCoroutineContextCoroutineScopePredefined CoroutineScopePredefined DispatchersPredefined CoroutineStartJobCreate a Corou…...

Python面向对象,实现图片处理案例,支持:高斯模糊、Canny边缘检测、反转边缘图像、生成手绘效果、调亮度......等等

实验图片如下&#xff1a; 命名为img1.jpg, 放在项目下新建文件夹images下 项目构造如下&#xff1a; app.py源码如下 import cv2 import os from matplotlib import pyplot as plt import numpy as npclass ImageProcessor:def __init__(self, image_path):self.image cv…...

SOLID - 依赖倒置原则(Dependency Inversion Principle)

SOLID - 依赖倒置原则&#xff08;Dependency Inversion Principle&#xff09; 定义 依赖倒置原则&#xff08;Dependency Inversion Principle&#xff0c;DIP&#xff09;是面向对象设计中的五大基本原则之一&#xff0c;通常缩写为SOLID中的D。DIP由Robert C. Martin提出&…...

【.NET 8 实战--孢子记账--从单体到微服务】--需求拆分与规划

在上一篇文章中我们收集了需求&#xff0c;并对需求进行了简单的分析和规划&#xff0c;但是对于开发人员来说&#xff0c;上一篇文章的需求还不够详细&#xff0c;并且没有形成计划。因此本篇文章将带领大家来拆分需求并规划开发里程碑。 一、详细需求列表 项目组进行了多次…...

在macOS的多任务处理环境中,如何平衡应用的性能与用户体验?这是否是一个复杂的优化问题?如何优化用户体验|多任务处理|用户体验|应用设计

目录 一 多任务处理与应用性能 1. macOS中的多任务处理机制 2. 性能优化的基本策略 二 用户体验的关键要素 1. 响应速度 2. 界面友好性 3. 功能的直观性 三 平衡性能与用户体验的策略 1. 资源管理 2. 优化数据加载 3. 使用合适的线程模型 4. 实时监测和调整 四 使…...

Vscode配置CC++编程环境的使用体验优化和补充说明

文章目录 快速编译运行&#x1f47a;code runner插件方案Code Runner Configuration 直接配置 相关指令和快捷键默认task配置和取消默认 配置文件补充介绍(可选 推荐阅读)&#x1f60a;使用vscode预置变量和环境变量环境变量的使用使用环境变量的好处环境变量可能引起的问题 检…...

十个方法杜绝CAD图纸泄密风险!2024年图纸防泄密指南!「必看」

随着信息技术的发展&#xff0c;CAD图纸的应用日益普遍&#xff0c;然而随之而来的图纸泄密风险也愈加严重。企业在提升效率的同时&#xff0c;更需重视信息安全。为此&#xff0c;本文将介绍十个有效的方法&#xff0c;帮助企业杜绝CAD图纸泄密风险&#xff0c;保障商业机密。…...

基于大模型的 UI 自动化系统

基于大模型的 UI 自动化系统 下面是一个完整的 Python 系统,利用大模型实现智能 UI 自动化,结合计算机视觉和自然语言处理技术,实现"看屏操作"的能力。 系统架构设计 #mermaid-svg-2gn2GRvh5WCP2ktF {font-family:"trebuchet ms",verdana,arial,sans-…...

VB.net复制Ntag213卡写入UID

本示例使用的发卡器&#xff1a;https://item.taobao.com/item.htm?ftt&id615391857885 一、读取旧Ntag卡的UID和数据 Private Sub Button15_Click(sender As Object, e As EventArgs) Handles Button15.Click轻松读卡技术支持:网站:Dim i, j As IntegerDim cardidhex, …...

逻辑回归:给不确定性划界的分类大师

想象你是一名医生。面对患者的检查报告&#xff08;肿瘤大小、血液指标&#xff09;&#xff0c;你需要做出一个**决定性判断**&#xff1a;恶性还是良性&#xff1f;这种“非黑即白”的抉择&#xff0c;正是**逻辑回归&#xff08;Logistic Regression&#xff09;** 的战场&a…...

Opencv中的addweighted函数

一.addweighted函数作用 addweighted&#xff08;&#xff09;是OpenCV库中用于图像处理的函数&#xff0c;主要功能是将两个输入图像&#xff08;尺寸和类型相同&#xff09;按照指定的权重进行加权叠加&#xff08;图像融合&#xff09;&#xff0c;并添加一个标量值&#x…...

深入理解JavaScript设计模式之单例模式

目录 什么是单例模式为什么需要单例模式常见应用场景包括 单例模式实现透明单例模式实现不透明单例模式用代理实现单例模式javaScript中的单例模式使用命名空间使用闭包封装私有变量 惰性单例通用的惰性单例 结语 什么是单例模式 单例模式&#xff08;Singleton Pattern&#…...

《用户共鸣指数(E)驱动品牌大模型种草:如何抢占大模型搜索结果情感高地》

在注意力分散、内容高度同质化的时代&#xff0c;情感连接已成为品牌破圈的关键通道。我们在服务大量品牌客户的过程中发现&#xff0c;消费者对内容的“有感”程度&#xff0c;正日益成为影响品牌传播效率与转化率的核心变量。在生成式AI驱动的内容生成与推荐环境中&#xff0…...

视频字幕质量评估的大规模细粒度基准

大家读完觉得有帮助记得关注和点赞&#xff01;&#xff01;&#xff01; 摘要 视频字幕在文本到视频生成任务中起着至关重要的作用&#xff0c;因为它们的质量直接影响所生成视频的语义连贯性和视觉保真度。尽管大型视觉-语言模型&#xff08;VLMs&#xff09;在字幕生成方面…...

Matlab | matlab常用命令总结

常用命令 一、 基础操作与环境二、 矩阵与数组操作(核心)三、 绘图与可视化四、 编程与控制流五、 符号计算 (Symbolic Math Toolbox)六、 文件与数据 I/O七、 常用函数类别重要提示这是一份 MATLAB 常用命令和功能的总结,涵盖了基础操作、矩阵运算、绘图、编程和文件处理等…...

让AI看见世界:MCP协议与服务器的工作原理

让AI看见世界&#xff1a;MCP协议与服务器的工作原理 MCP&#xff08;Model Context Protocol&#xff09;是一种创新的通信协议&#xff0c;旨在让大型语言模型能够安全、高效地与外部资源进行交互。在AI技术快速发展的今天&#xff0c;MCP正成为连接AI与现实世界的重要桥梁。…...

selenium学习实战【Python爬虫】

selenium学习实战【Python爬虫】 文章目录 selenium学习实战【Python爬虫】一、声明二、学习目标三、安装依赖3.1 安装selenium库3.2 安装浏览器驱动3.2.1 查看Edge版本3.2.2 驱动安装 四、代码讲解4.1 配置浏览器4.2 加载更多4.3 寻找内容4.4 完整代码 五、报告文件爬取5.1 提…...