当前位置: 首页 > news >正文

jieba-fenci 05 结巴分词之简单聊一聊

拓展阅读

DFA 算法详解

为了便于大家学习,项目开源地址如下,欢迎 fork+star 鼓励一下老马~

敏感词 sensitive-word

分词 segment

分词系列专题

jieba-fenci 01 结巴分词原理讲解 segment

jieba-fenci 02 结巴分词原理讲解之数据归一化 segment

jieba-fenci 03 结巴分词与繁简体转换 segment

jieba-fenci 04 结巴分词之词性标注实现思路 speechTagging segment

jieba-fenci 05 结巴分词之简单聊一聊

结巴分词

结巴分词(Jieba)是一个广泛使用的中文文本分词工具,因其高效和易用而受到欢迎。以下是结巴分词的一些关键特性和使用方法:

特性

  1. 三种分词模式

    • 精确模式:试图将句子最精确地切开,适合文本分析。
    • 全模式:把句子中所有的可能分词都找出来,速度较快,但不适合文本分析。
    • 搜索引擎模式:在精确模式的基础上,对长词再次切分,适合用于搜索引擎构建倒排索引。
  2. 自定义词典:用户可以添加自己的词典,以提高分词的准确性。通过自定义词典,可以为一些特定领域的词汇提供更好的支持。

  3. 词性标注:结巴分词不仅可以进行分词,还可以为每个词语进行词性标注,方便进一步的自然语言处理。

  4. 支持多种编码:可以处理 UTF-8 和 GBK 编码的文本,适用于多种场景。

自定义词典

可以使用自定义词典来提升特定领域词汇的识别度。自定义词典的格式为每行一个词,格式为“词语 词频 词性”。

应用场景

  • 文本分析:如情感分析、主题建模等。
  • 搜索引擎:为搜索引擎提供分词支持,构建倒排索引。
  • 推荐系统:通过对用户输入的文本进行分词,分析用户兴趣。

结巴分词因其灵活性和高效性,广泛应用于各种中文自然语言处理任务中。

java 结巴分词入门例子

要在 Java 中使用结巴分词(Jieba),可以通过引入结巴分词的 Java 实现库(如 jieba-analysis)来实现。

以下是一个简单的入门示例,包括 Maven 的依赖配置和代码示例。

1. Maven 依赖

在你的 Maven 项目的 pom.xml 文件中,添加以下依赖:

<dependencies><dependency><groupId>com.github.hankcs</groupId><artifactId>jieba-analysis</artifactId><version>7.0.0</version> <!-- 请检查最新版本 --></dependency>
</dependencies>

2. Java 代码示例

以下是一个简单的 Java 程序,演示如何使用结巴分词进行分词处理:

import com.hankcs.jieba.JiebaSegmenter;
import com.hankcs.jieba.WordDictionary;import java.util.List;public class JiebaExample {public static void main(String[] args) {// 初始化 Jieba 分词器JiebaSegmenter segmenter = new JiebaSegmenter();// 要分词的文本String text = "我爱自然语言处理";// 精确模式分词List<String> words = segmenter.sentenceProcess(text);System.out.println("精确模式分词: " + words);// 全模式分词List<String> allWords = segmenter.process(text, JiebaSegmenter.SegMode.SEARCH);System.out.println("全模式分词: " + allWords);// 添加自定义词典(可选)// WordDictionary.getInstance().add("自然语言处理");// List<String> customWords = segmenter.sentenceProcess(text);// System.out.println("自定义词典分词: " + customWords);}
}

结巴分词词性标注 HMM 示意代码

下面是一个基于动态规划和隐马尔可夫模型(HMM)进行词性标注的简化实现。

这个示例展示了基本的动态规划算法如何与 HMM 结合使用。

完整代码实现

import java.util.HashMap;
import java.util.List;
import java.util.Map;public class HMMPOSTagger {// 状态转移概率private static final Map<String, Map<String, Double>> transitionProbabilities = new HashMap<>();// 发射概率private static final Map<String, Map<String, Double>> emissionProbabilities = new HashMap<>();// 词典private static final String[] states = {"名词", "动词", "形容词", "代词", "副词"};static {// 状态转移概率(简化示例)transitionProbabilities.put("名词", Map.of("名词", 0.3, "动词", 0.2, "形容词", 0.1, "代词", 0.1, "副词", 0.1));transitionProbabilities.put("动词", Map.of("名词", 0.2, "动词", 0.3, "形容词", 0.1, "代词", 0.1, "副词", 0.2));// ... 更多状态转移概率// 发射概率(简化示例)emissionProbabilities.put("名词", Map.of("自然语言处理", 0.8, "计算机", 0.2));emissionProbabilities.put("动词", Map.of("爱", 1.0));emissionProbabilities.put("形容词", Map.of("好", 1.0));// ... 更多发射概率}public static String[] viterbi(List<String> words) {int n = words.size();int m = states.length;double[][] dp = new double[n][m];int[][] backpointer = new int[n][m];// 初始化for (int j = 0; j < m; j++) {String state = states[j];dp[0][j] = emissionProbabilities.getOrDefault(state, new HashMap<>()).getOrDefault(words.get(0), 0.0);}// 动态规划for (int i = 1; i < n; i++) {for (int j = 0; j < m; j++) {String state = states[j];double maxProb = 0.0;int bestState = 0;for (int k = 0; k < m; k++) {String prevState = states[k];double prob = dp[i - 1][k] * transitionProbabilities.getOrDefault(prevState, new HashMap<>()).getOrDefault(state, 0.0);if (prob > maxProb) {maxProb = prob;bestState = k;}}dp[i][j] = maxProb * emissionProbabilities.getOrDefault(state, new HashMap<>()).getOrDefault(words.get(i), 0.0);backpointer[i][j] = bestState;}}// 回溯找到最优路径double maxProb = 0.0;int bestLastState = 0;for (int j = 0; j < m; j++) {if (dp[n - 1][j] > maxProb) {maxProb = dp[n - 1][j];bestLastState = j;}}// 构建最优状态序列String[] result = new String[n];int currentState = bestLastState;for (int i = n - 1; i >= 0; i--) {result[i] = states[currentState];currentState = backpointer[i][currentState];}return result;}public static void main(String[] args) {List<String> words = List.of("我", "爱", "自然语言处理");String[] posTags = viterbi(words);// 输出结果for (int i = 0; i < words.size(); i++) {System.out.println(words.get(i) + ": " + posTags[i]);}}
}

实现细节

  1. 状态转移概率(Transition Probabilities):用于描述从一个状态(词性)转移到另一个状态的概率。
  2. 发射概率(Emission Probabilities):描述给定状态(词性)时,生成特定观察(词)的概率。
  3. 动态规划(Viterbi Algorithm)
    • 初始化 DP 表格。
    • 填充 DP 表,计算每个状态的最大概率。
    • 使用回溯表找到最优路径。
  4. 词典:在实际应用中,应该加载更完整的状态转移和发射概率数据。

注意事项

  • 这个示例中的概率数据是简化的,实际使用时应基于真实的训练数据进行统计。
  • 代码为简化版本,未处理所有边界情况,实际应用中需进行完善。
  • 可以考虑使用现成的 HMM 库,减少实现复杂度和错误。

相关文章:

jieba-fenci 05 结巴分词之简单聊一聊

拓展阅读 DFA 算法详解 为了便于大家学习&#xff0c;项目开源地址如下&#xff0c;欢迎 forkstar 鼓励一下老马~ 敏感词 sensitive-word 分词 segment 分词系列专题 jieba-fenci 01 结巴分词原理讲解 segment jieba-fenci 02 结巴分词原理讲解之数据归一化 segment jieba…...

Hadoop期末复习(完整版)

前言&#xff08;全部为语雀导出&#xff0c;个人所写&#xff0c;仅用于学习&#xff01;&#xff01;&#xff01;&#xff01;&#xff09; 复习之前我们要有目的性&#xff0c;明确考什么&#xff0c;不考什么。 对于hadoop来说&#xff0c;首先理论方面是跑不掉的&#x…...

Python篮球王子

系列文章 序号直达链接爱心系列1Python制作一个无法拒绝的表白界面2Python满屏飘字表白代码3Python无限弹窗满屏表白代码4Python李峋同款可写字版跳动的爱心5Python流星雨代码6Python漂浮爱心代码7Python爱心光波代码8Python普通的玫瑰花代码9Python炫酷的玫瑰花代码10Python多…...

分享一些在部署k8s集群时遇到的问题

目录 一、k8s拉取镜像失败&#xff0c;多半是docker镜像源失效了&#xff0c;需要经常更新 1.编辑该配置文件&#xff1a; 2.重启服务器&#xff1a; 二、kubectl get nodes时出现&#xff1a;The connection to the server localhost:8080 was refused - did you specify t…...

【Canal 中间件】Canal使用原理与基本组件概述

文章目录 一、canal 概述1.2 什么是 canal2.3 canal 的所有组件 二、canal 工作原理2.1 MySQL 主备复制原理2.2 canal 工作原理 三、canal.server 组件3.1 canal.server 的架构3.2 instance 模块组成部分 四、canal.client 组件4.1 类设计4.2 server/clinet 交互协议4.3 使用案…...

《Baichuan-Omni》论文精读:第1个7B全模态模型 | 能够同时处理文本、图像、视频和音频输入

技术报告Baichuan-Omni Technical ReportGitHub仓库地址 文章目录 论文摘要1. 引言简介2. 训练2.1. 高质量的多模态数据2.2. 多模态对齐预训练2.2.1. 图像-语言分支2.2.2. 视频语音分支2.2.3. 音频语言分支2.2.4. 图像-视频-音频全方位对齐 2.3. 多模态微调监督 3. 实验3.1. 语…...

YOLOv6-4.0部分代码阅读笔记-common.py

common.py yolov6\layers\common.py 目录 common.py 1.所需的库和模块 2.class SiLU(nn.Module): 3.class ConvModule(nn.Module): 4.class ConvBNReLU(nn.Module): 5.class ConvBNSiLU(nn.Module): 6.class ConvBN(nn.Module): 7.class ConvBNHS(nn.Module): …...

移植 AWTK 到 纯血鸿蒙 (HarmonyOS NEXT) 系统 (4) - 平台适配

在移植 AWTK 到 HarmonyOS NEXT 系统之前&#xff0c;我们需要先完成平台适配&#xff0c;比如文件、多线程&#xff08;线程和同步&#xff09;、时间、动态库和资源管理。 1. 文件 HarmonyOS NEXT 支持标准的 POSIX 文件操作接口&#xff0c;我们可以直接使用下面的代码&am…...

Java 多线程(八)—— 锁策略,synchronized 的优化,JVM 与编译器的锁优化,ReentrantLock,CAS

前言 本文为 Java 面试小八股&#xff0c;一句话&#xff0c;理解性记忆&#xff0c;不能理解就死背吧。 锁策略 悲观锁与乐观锁 悲观锁和乐观锁是锁的特性&#xff0c;并不是特指某个具体的锁。 我们知道在多线程中&#xff0c;锁是会被竞争的&#xff0c;悲观锁就是指锁…...

【项目分享】法拉利中控台模拟 html+css+js

引入&#xff1a; 制作一个模拟法拉利中控台的网页是一个有趣且富有挑战性的项目。为了简化这个任务&#xff0c;我们可以使用一些HTML、CSS和JavaScript来实现一个基本的界面。以下是一个简单的示例&#xff0c;展示了如何创建一个基本的法拉利中控台模拟网页。 效果展示&…...

Rust 力扣 - 2461. 长度为 K 子数组中的最大和

文章目录 题目描述题解思路题解代码题目链接 题目描述 题解思路 我们遍历长度为k的窗口&#xff0c;用一个哈希表记录窗口内的所有元素&#xff08;用来对窗口内元素去重&#xff09;&#xff0c;我们取哈希表中元素数量等于k的窗口总和的最大值 题解代码 use std::collecti…...

stm32103c8t6 pwm驱动舵机(SG90)

本方法采用通用定时器&#xff08;TIM2、TIM3、TIM4、TIM5&#xff09;实现 代码&#xff1a; PWM.h #ifndef __PWM_H // 防止头文件重复包含 #define __PWM_H#include "stm32f10x.h" // 包含STM32F10x系列的设备头文件// 函数声明 void TIM2_PWM_In…...

Python For循环

Python 的 for 循环是自动化重复任务的强大工具&#xff0c;可以使代码更高效、更易于管理。本教程将解释 for 循环的工作原理&#xff0c;探讨不同的应用场景&#xff0c;并提供大量实用示例。无论你是初学者还是希望提升技能的开发者&#xff0c;这些示例都将帮助你更好地在 …...

C++入门——“C++11-右值引用和移动语义”

C11相比于C98增加以许多新特性&#xff0c;让C语言更加灵活好用&#xff0c;但是貌似也增加了许多学习的难度&#xff0c;现在先看第一部分。 一、右值引用和移动语义 1.右值引用和左值引用 在C中&#xff0c;值可以大致分为右值和左值&#xff0c;左值大概是哪些已经被定义的变…...

timm使用笔记

timm&#xff08;Timm is a model repository for PyTorch&#xff09;是一个 PyTorch 原生实现的计算机视觉模型库。它提供了预训练模型和各种网络组件&#xff0c;可以用于各种计算机视觉任务&#xff0c;例如图像分类、物体检测、语义分割等等。timm&#xff08;库提供了预训…...

android浏览器源码 可输入地址或关键词搜索 android studio 2024 可开发可改地址

Android 浏览器是一种运行在Android操作系统上的应用程序&#xff0c;主要用于访问和查看互联网内容。以下是关于Android浏览器的详细介绍&#xff1a; 1. 基本功能 Android浏览器提供了用户浏览网页的基本功能&#xff0c;如&#xff1a; 网页加载&#xff1a;支持加载静态…...

贪心算法入门(一)

1.什么是贪心算法&#xff1f; 贪心算法是一种解决问题的策略&#xff0c;它将复杂的问题分解为若干个步骤&#xff0c;并在每一步都选择当前最优的解决方案&#xff0c;最终希望能得到全局最优解。这种策略的核心在于“最优”二字&#xff0c;意味着我们追求的是以最少的时间和…...

C# ref和out 有什么区别,分别用在那种场景

在C#中&#xff0c;ref和out都是用于按引用传递参数的关键字&#xff0c;但它们有一些细微的差别和使用场景。 ref 关键字 ref 关键字用于按引用传递参数。这意味着当你将一个变量作为参数传递给一个方法时&#xff0c;你不是传递变量的值&#xff0c;而是传递变量的引用。因…...

TikTok直播专线:提升直播效果和体验

作为当今全球最受欢迎的社交媒体平台之一&#xff0c;TikTok为商家提供了无限的商机和市场。然而&#xff0c;商家在使用TikTok时也面临着许多挑战&#xff0c;如网络延迟、直播中断以及账号被封等问题。TikTok直播专线旨在为商家提供高速稳定的网络连接&#xff0c;助力他们在…...

由浅入深逐步理解spring boot中如何实现websocket

实现websocket的方式 1.springboot中有两种方式实现websocket&#xff0c;一种是基于原生的基于注解的websocket&#xff0c;另一种是基于spring封装后的WebSocketHandler 基于原生注解实现websocket 1&#xff09;先引入websocket的starter坐标 <dependency><grou…...

在软件开发中正确使用MySQL日期时间类型的深度解析

在日常软件开发场景中&#xff0c;时间信息的存储是底层且核心的需求。从金融交易的精确记账时间、用户操作的行为日志&#xff0c;到供应链系统的物流节点时间戳&#xff0c;时间数据的准确性直接决定业务逻辑的可靠性。MySQL作为主流关系型数据库&#xff0c;其日期时间类型的…...

【Python】 -- 趣味代码 - 小恐龙游戏

文章目录 文章目录 00 小恐龙游戏程序设计框架代码结构和功能游戏流程总结01 小恐龙游戏程序设计02 百度网盘地址00 小恐龙游戏程序设计框架 这段代码是一个基于 Pygame 的简易跑酷游戏的完整实现,玩家控制一个角色(龙)躲避障碍物(仙人掌和乌鸦)。以下是代码的详细介绍:…...

java调用dll出现unsatisfiedLinkError以及JNA和JNI的区别

UnsatisfiedLinkError 在对接硬件设备中&#xff0c;我们会遇到使用 java 调用 dll文件 的情况&#xff0c;此时大概率出现UnsatisfiedLinkError链接错误&#xff0c;原因可能有如下几种 类名错误包名错误方法名参数错误使用 JNI 协议调用&#xff0c;结果 dll 未实现 JNI 协…...

Objective-C常用命名规范总结

【OC】常用命名规范总结 文章目录 【OC】常用命名规范总结1.类名&#xff08;Class Name)2.协议名&#xff08;Protocol Name)3.方法名&#xff08;Method Name)4.属性名&#xff08;Property Name&#xff09;5.局部变量/实例变量&#xff08;Local / Instance Variables&…...

电脑插入多块移动硬盘后经常出现卡顿和蓝屏

当电脑在插入多块移动硬盘后频繁出现卡顿和蓝屏问题时&#xff0c;可能涉及硬件资源冲突、驱动兼容性、供电不足或系统设置等多方面原因。以下是逐步排查和解决方案&#xff1a; 1. 检查电源供电问题 问题原因&#xff1a;多块移动硬盘同时运行可能导致USB接口供电不足&#x…...

第一篇:Agent2Agent (A2A) 协议——协作式人工智能的黎明

AI 领域的快速发展正在催生一个新时代&#xff0c;智能代理&#xff08;agents&#xff09;不再是孤立的个体&#xff0c;而是能够像一个数字团队一样协作。然而&#xff0c;当前 AI 生态系统的碎片化阻碍了这一愿景的实现&#xff0c;导致了“AI 巴别塔问题”——不同代理之间…...

Element Plus 表单(el-form)中关于正整数输入的校验规则

目录 1 单个正整数输入1.1 模板1.2 校验规则 2 两个正整数输入&#xff08;联动&#xff09;2.1 模板2.2 校验规则2.3 CSS 1 单个正整数输入 1.1 模板 <el-formref"formRef":model"formData":rules"formRules"label-width"150px"…...

MySQL账号权限管理指南:安全创建账户与精细授权技巧

在MySQL数据库管理中&#xff0c;合理创建用户账号并分配精确权限是保障数据安全的核心环节。直接使用root账号进行所有操作不仅危险且难以审计操作行为。今天我们来全面解析MySQL账号创建与权限分配的专业方法。 一、为何需要创建独立账号&#xff1f; 最小权限原则&#xf…...

DeepSeek源码深度解析 × 华为仓颉语言编程精粹——从MoE架构到全场景开发生态

前言 在人工智能技术飞速发展的今天&#xff0c;深度学习与大模型技术已成为推动行业变革的核心驱动力&#xff0c;而高效、灵活的开发工具与编程语言则为技术创新提供了重要支撑。本书以两大前沿技术领域为核心&#xff0c;系统性地呈现了两部深度技术著作的精华&#xff1a;…...

Spring事务传播机制有哪些?

导语&#xff1a; Spring事务传播机制是后端面试中的必考知识点&#xff0c;特别容易出现在“项目细节挖掘”阶段。面试官通过它来判断你是否真正理解事务控制的本质与异常传播机制。本文将从实战与源码角度出发&#xff0c;全面剖析Spring事务传播机制&#xff0c;帮助你答得有…...