文章解读与仿真程序复现思路——电力自动化设备EI\CSCD\北大核心《基于对等架构的虚拟电厂-配电网双层电碳协同调度模型》
本专栏栏目提供文章与程序复现思路,具体已有的论文与论文源程序可翻阅本博主免费的专栏栏目《论文与完整程序》
论文与完整源程序_电网论文源程序的博客-CSDN博客https://blog.csdn.net/liang674027206/category_12531414.html
电网论文源程序-CSDN博客电网论文源程序擅长文章解读,论文与完整源程序,等方面的知识,电网论文源程序关注python,机器学习,计算机视觉,深度学习,神经网络,数据挖掘领域.https://blog.csdn.net/LIANG674027206?type=download
这是一篇关于基于对等架构的虚拟电厂-配电网双层电碳协同调度模型的研究论文。以下是其核心内容的整理:
标题
- 基于对等架构的虚拟电厂-配电网双层电碳协同调度模型
摘要
- 为适应多种低碳能源并存的碳市场,建立了基于对等架构的虚拟电厂-配电网协同调度双层模型。
- 引入碳排放流理论,结合电网潮流确定节点碳排放责任。
- 建立双层模型,上层为配电网最优潮流模型,下层为虚拟电厂点对点交易模型。
- 通过目标级联分析法构建对等架构,并通过共识变量实现协同调度。
- 使用基于共识的自适应步长交替方向乘子法处理虚拟电厂间点对点交易问题,促进资源消纳的同时实现隐私保护。
- 以IEEE33节点配电网为例,验证了模型的有效性。
关键词
- 虚拟电厂;碳排放流理论;目标级联分析法;配电网;交替方向乘子法;点对点交易
研究内容
- VPP-DSO双层模型框架:介绍了双层模型的结构,包括上层的配电网最优潮流模型和下层的虚拟电厂点对点交易模型。
- 碳排放流理论:在电网潮流计算的基础上发展,实现对碳排放的追踪。
- VPP间P2P交易模型:构建了包含光伏电站、储能装置、燃气轮机和柔性负荷的VPP模型,并考虑了光伏出力的不确定性。
方法论
- 目标级联分析法(ATC):构建VPP和DSO的对等架构,通过共识变量实现协同调度。
- 基于共识的自适应步长交替方向乘子法(ADMM):处理虚拟电厂间点对点交易问题,提高计算效率并保护隐私。
算例分析
- 使用改进的IEEE33节点配电网进行仿真计算,设置了不同的算例方案,对比了ATC法和ADMM算法在不同情况下的表现。
结论
- 提出的双层模型可以协同VPP和DSO的调度策略,保证VPP的经济效益与隐私,也保证DSO追求的配电网安全性。
- 碳排放流理论可以辅助VPP与DSO计算自身节点应承担的碳排放责任,推动新能源电能的使用,促进配电网低碳运行。
- 自适应步长法可以显著提升ADMM的计算速度,且与ATC法的兼容性强,不对其实迭代造成影
为了复现文章中的仿真研究,我们需要遵循以下步骤,并将其转化为程序语言(Python)代码。以下是复现仿真的总体思路和具体步骤:
总体思路:
- 数据准备:收集电网的运行数据,包括虚拟电厂(VPP)的分布式资源数据和配电网的数据。
- 模型构建:构建配电网最优潮流模型和虚拟电厂点对点交易模型。
- 算法实现:实现目标级联分析法(ATC)和基于共识的自适应步长交替方向乘子法(ADMM)。
- 仿真运行:在不同的运行场景下运行仿真,并进行多次迭代直到收敛。
- 结果分析:分析仿真结果,包括成本、P2P交易量、碳排放强度等,并验证模型的有效性。
程序实现:
import numpy as np
import pandas as pd
from scipy.optimize import linprog # 假设使用线性规划求解最优潮流问题# 假设有一些用于求解最优潮流和P2P交易的函数
from optimal_power_flow import solve_optimal_power_flow
from peer_to_peer_trading import solve_p2p_trading# 1. 数据准备
# 假设已有电网运行数据和虚拟电厂数据
grid_data = pd.read_csv('grid_data.csv')
vpp_data = pd.read_csv('vpp_data.csv')# 2. 模型构建
# 构建配电网最优潮流模型和虚拟电厂点对点交易模型
def build_models(grid_data, vpp_data):# 这里只是一个示例,实际的模型构建需要根据文章中的方法实现optimal_power_flow_model = solve_optimal_power_flow(grid_data)p2p_trading_model = solve_p2p_trading(vpp_data)return optimal_power_flow_model, p2p_trading_model# 3. 算法实现
# 实现ATC法和ADMM算法
def atc_method(optimal_power_flow_model, p2p_trading_model):# ATC法的实现,需要根据文章中的描述编写passdef admm_method(p2p_trading_model):# ADMM算法的实现,需要根据文章中的描述编写pass# 4. 仿真运行
def run_simulation(optimal_power_flow_model, p2p_trading_model, iterations):for i in range(iterations):# 运行ATC法和ADMM算法atc_method(optimal_power_flow_model, p2p_trading_model)admm_method(p2p_trading_model)# 检查收敛条件if check_convergence():break# 5. 结果分析
def analyze_results(optimal_power_flow_model, p2p_trading_model):# 分析成本、P2P交易量、碳排放强度等costs = calculate_costs(p2p_trading_model)emissions = calculate_emissions(optimal_power_flow_model)return costs, emissions# 主程序
def main():# 构建模型optimal_power_flow_model, p2p_trading_model = build_models(grid_data, vpp_data)# 运行仿真run_simulation(optimal_power_flow_model, p2p_trading_model, iterations=100)# 分析结果costs, emissions = analyze_results(optimal_power_flow_model, p2p_trading_model)print("成本:", costs)print("碳排放强度:", emissions)# 辅助函数
def check_convergence():# 检查算法是否收敛return True # 假设收敛def calculate_costs(p2p_trading_model):# 计算成本return 1000 # 假设成本def calculate_emissions(optimal_power_flow_model):# 计算碳排放强度return 0.5 # 假设碳排放强度if __name__ == "__main__":main()
注意事项:
- 上述代码是一个框架性的示例,具体的函数实现(如
solve_optimal_power_flow
、solve_p2p_trading
、atc_method
、admm_method
等)需要根据文章中的具体方法来编写。 - 数据文件
grid_data.csv
和vpp_data.csv
需要根据实际情况准备。 - 程序中的算法实现(如ATC和ADMM)需要根据文章中的描述进行详细编写。
- 收敛条件和成本、碳排放强度的计算也需要根据文章中的方法具体实现。
本专栏栏目提供文章与程序复现思路,具体已有的论文与论文源程序可翻阅本博主免费的专栏栏目《论文与完整程序》
论文与完整源程序_电网论文源程序的博客-CSDN博客https://blog.csdn.net/liang674027206/category_12531414.html
电网论文源程序-CSDN博客电网论文源程序擅长文章解读,论文与完整源程序,等方面的知识,电网论文源程序关注python,机器学习,计算机视觉,深度学习,神经网络,数据挖掘领域.https://blog.csdn.net/LIANG674027206?type=download
相关文章:
文章解读与仿真程序复现思路——电力自动化设备EI\CSCD\北大核心《基于对等架构的虚拟电厂-配电网双层电碳协同调度模型》
本专栏栏目提供文章与程序复现思路,具体已有的论文与论文源程序可翻阅本博主免费的专栏栏目《论文与完整程序》 论文与完整源程序_电网论文源程序的博客-CSDN博客https://blog.csdn.net/liang674027206/category_12531414.html 电网论文源程序-CSDN博客电网论文源…...

大数据-204 数据挖掘 机器学习理论 - 混淆矩阵 sklearn 决策树算法评价
点一下关注吧!!!非常感谢!!持续更新!!! 目前已经更新到了: Hadoop(已更完)HDFS(已更完)MapReduce(已更完&am…...

Fsm1
为了处理有时间上先后的事件,在FPGA中采用状态机的形式完成事件处理。 Mealy 状态机:输出不仅取决于当前状态,还取决于输入状态。 Moore 状态机:组合逻辑的输出只取决于当前状态,而与输入状态无关。 二段式状态机&…...
C. Gorilla and Permutation
time limit per test 2 seconds memory limit per test 256 megabytes Gorilla and Noobish_Monk found three numbers nn, mm, and kk (m<km<k). They decided to construct a permutation†† of length nn. For the permutation, Noobish_Monk came up with the …...

从0开始学python-day17-数据结构2
2.3 队列 队列(Queue),它是一种运算受限的线性表,先进先出(FIFO First In First Out) 队列是一种受限的线性结构 受限之处在于它只允许在表的前端(front)进行删除操作,而在表的后端(rear)进行插入操作 P…...
(蓝桥杯C/C++)—— 编程基础
文章目录 一、C基础格式 1.打印hello, world 2.基本数据类型 二、string 1.string简介 2.string的声明和初始化 3.string其他基本操作 (1)获取字符串长度 (2) 拼接字符串( 或 append) (3)字符串查找(find) (4)字符串替换 (5)提取子字符串…...

企业物流管理数据仓库建设的全面指南
文章目录 一、物流管理目标二、总体要求三、数据分层和数据构成(1)数据分层(2)数据构成 四、数据存储五、数据建模和数据模型(1)数据建模(2)数据模型 六、总结 在企业物流管理中&…...

数据采集-Kepware 安装证书异常处理
这里写目录标题 一、 问题描述二、原因分析三、处理方案3.1 1.执行根证书的更新3.2 安装KepServerEx 资源 一、 问题描述 在进行KepServerEx进行安装的情况下,出现了如下的报错: The installer was unable to find required root certificates ,please …...
ubuntu禁止自动更新设置
背景概述 从CentOS变更到uBuntu或多或少会遇到一些坑,今天分享一个。 在Ubuntu系统中,自动更新是一个既方便又引发争议的功能。它可以帮助用户保持系统的最新状态,但有时也会因为自动更新而导致系统不稳定或不兼容。 Ubuntu系统的自动更新主…...

Rust 力扣 - 1461. 检查一个字符串是否包含所有长度为 K 的二进制子串
文章目录 题目描述题解思路题解代码题目链接 题目描述 题解思路 长度为k的二进制子串所有取值的集合为[0, sum(k)],其中sum(k)为1 2 4 … 1 << (k - 1) 我们只需要创建一个长度为sum(k) 1的数组 f ,其中下标为 i 的元素用来标记字符串中子串…...

C#/.NET/.NET Core技术前沿周刊 | 第 11 期(2024年10.21-10.31)
前言 C#/.NET/.NET Core技术前沿周刊,你的每周技术指南针!记录、追踪C#/.NET/.NET Core领域、生态的每周最新、最实用、最有价值的技术文章、社区动态、优质项目和学习资源等。让你时刻站在技术前沿,助力技术成长与视野拓宽。 欢迎投稿、推荐…...

unity 三维数学 ,角度 弧度计算
弧度 角度*π/180...

Java基础4-控制流程
控制流程 Java使用条件语句和循环结构确定控制流程。基本和C一样,但是没有goto语句,但break语句可以有标签,用于跳出内层循环。 块作用域(block) 块(即复合语句)是指由一堆花括号括起来的若干…...

面试题分享11月1日
1、过滤器和拦截器的区别 过滤器是基于spring的 拦截器是基于Java Web的 2、session 和 cookie 的区别、关系 cookie session 存储位置 保存在浏览器 (客户端) 保存在服务器 存储数据大小 限制大小,存储数据约为4KB 不限制大小&…...

【含文档】基于ssm+jsp的学科竞赛系统(含源码+数据库+lw)
1.开发环境 开发系统:Windows10/11 架构模式:MVC/前后端分离 JDK版本: Java JDK1.8 开发工具:IDEA 数据库版本: mysql5.7或8.0 数据库可视化工具: navicat 服务器: apache tomcat 主要技术: Java,Spring,SpringMvc,mybatis,mysql,vue 2.视频演示地址 3.功能 系统定义了四个…...
Docker方式部署ClickHouse
Docker方式部署ClickHouse ClickHouse docker 版本镜像:https://docker.aityp.com/r/docker.io/clickhouse/clickhouse-server ClickHouse 21.8.13.6 docker 版本镜像:https://docker.aityp.com/image/docker.io/clickhouse/clickhouse-server:21.8.13.…...

车载通信架构 --- PNC、UB与信号的关系
我是穿拖鞋的汉子,魔都中坚持长期主义的汽车电子工程师。 老规矩,分享一段喜欢的文字,避免自己成为高知识低文化的工程师: 所有人的看法和评价都是暂时的,只有自己的经历是伴随一生的,几乎所有的担忧和畏惧,都是来源于自己的想象,只有你真的去做了,才会发现有多快乐。…...

智慧农业云平台:大数据赋能现代农业的未来
近年来,随着科技的迅速发展,农业作为传统行业正面临着前所未有的变革。智慧农业,作为现代农业发展的重要方向,借助云计算、大数据、物联网等技术,正在为农业生产、管理和服务提供全新的解决方案。在这个背景下…...

【python】OpenCV—Tracking(10.4)—Centroid
文章目录 1、任务描述2、人脸检测模型3、完整代码4、结果展示5、涉及到的库函数6、参考 1、任务描述 基于质心实现多目标(以人脸为例)跟踪 人脸检测采用深度学习的方法 核心步骤: 步骤#1:接受边界框坐标并计算质心 步骤#2&…...
为什么TCP(TIME_WAIT)2倍MSL
为什么TCP(TIME_WAIT)2倍MSL 一、TCP关闭连接的四次挥手流程进入TIME_WAIT 二、TIME_WAIT状态的意义1. 确保ACK报文到达对方2. 防止旧报文干扰新连接 三、为什么是2倍MSL四、TIME_WAIT的图解五、TIME_WAIT在实际应用中的影响总结 在TCP连接的关闭过程中&…...

未来机器人的大脑:如何用神经网络模拟器实现更智能的决策?
编辑:陈萍萍的公主一点人工一点智能 未来机器人的大脑:如何用神经网络模拟器实现更智能的决策?RWM通过双自回归机制有效解决了复合误差、部分可观测性和随机动力学等关键挑战,在不依赖领域特定归纳偏见的条件下实现了卓越的预测准…...
C++:std::is_convertible
C++标志库中提供is_convertible,可以测试一种类型是否可以转换为另一只类型: template <class From, class To> struct is_convertible; 使用举例: #include <iostream> #include <string>using namespace std;struct A { }; struct B : A { };int main…...
逻辑回归:给不确定性划界的分类大师
想象你是一名医生。面对患者的检查报告(肿瘤大小、血液指标),你需要做出一个**决定性判断**:恶性还是良性?这种“非黑即白”的抉择,正是**逻辑回归(Logistic Regression)** 的战场&a…...
STM32+rt-thread判断是否联网
一、根据NETDEV_FLAG_INTERNET_UP位判断 static bool is_conncected(void) {struct netdev *dev RT_NULL;dev netdev_get_first_by_flags(NETDEV_FLAG_INTERNET_UP);if (dev RT_NULL){printf("wait netdev internet up...");return false;}else{printf("loc…...
多模态商品数据接口:融合图像、语音与文字的下一代商品详情体验
一、多模态商品数据接口的技术架构 (一)多模态数据融合引擎 跨模态语义对齐 通过Transformer架构实现图像、语音、文字的语义关联。例如,当用户上传一张“蓝色连衣裙”的图片时,接口可自动提取图像中的颜色(RGB值&…...
使用van-uploader 的UI组件,结合vue2如何实现图片上传组件的封装
以下是基于 vant-ui(适配 Vue2 版本 )实现截图中照片上传预览、删除功能,并封装成可复用组件的完整代码,包含样式和逻辑实现,可直接在 Vue2 项目中使用: 1. 封装的图片上传组件 ImageUploader.vue <te…...

【开发技术】.Net使用FFmpeg视频特定帧上绘制内容
目录 一、目的 二、解决方案 2.1 什么是FFmpeg 2.2 FFmpeg主要功能 2.3 使用Xabe.FFmpeg调用FFmpeg功能 2.4 使用 FFmpeg 的 drawbox 滤镜来绘制 ROI 三、总结 一、目的 当前市场上有很多目标检测智能识别的相关算法,当前调用一个医疗行业的AI识别算法后返回…...

HarmonyOS运动开发:如何用mpchart绘制运动配速图表
##鸿蒙核心技术##运动开发##Sensor Service Kit(传感器服务)# 前言 在运动类应用中,运动数据的可视化是提升用户体验的重要环节。通过直观的图表展示运动过程中的关键数据,如配速、距离、卡路里消耗等,用户可以更清晰…...

算法:模拟
1.替换所有的问号 1576. 替换所有的问号 - 力扣(LeetCode) 遍历字符串:通过外层循环逐一检查每个字符。遇到 ? 时处理: 内层循环遍历小写字母(a 到 z)。对每个字母检查是否满足: 与…...

深入浅出深度学习基础:从感知机到全连接神经网络的核心原理与应用
文章目录 前言一、感知机 (Perceptron)1.1 基础介绍1.1.1 感知机是什么?1.1.2 感知机的工作原理 1.2 感知机的简单应用:基本逻辑门1.2.1 逻辑与 (Logic AND)1.2.2 逻辑或 (Logic OR)1.2.3 逻辑与非 (Logic NAND) 1.3 感知机的实现1.3.1 简单实现 (基于阈…...