爬虫技术——小白入狱案例

知孤云出岫
目录
- 1. 案例概述
- 2. 案例需求分析
- 3. 实现步骤
- Step 1: 环境准备
- Step 2: 分析百度图片URL请求规律
- Step 3: 编写爬虫代码
- 代码解析
- 4. 运行代码
- 5. 注意事项
- 6. 案例总结
要实现大批量爬取百度图片,可以使用Python编写一个网络爬虫,通过发送HTTP请求并解析网页内容获取图片URL,然后将图片下载到本地。以下是一个详细的技术案例,包括具体实现步骤和代码示例。
1. 案例概述
百度图片搜索页面可以展示大量的图片,我们可以通过分析其请求规律,编写爬虫从页面中获取图片URL,并将图片批量下载。我们将使用requests库获取网页内容,BeautifulSoup库解析HTML,re库进行正则匹配,同时使用多线程或异步库加速下载过程。
2. 案例需求分析
- 目标:批量下载百度图片搜索结果中的优质图片
- 技术栈:Python、requests、BeautifulSoup、正则表达式、线程池
- 难点:
- 爬虫需要模拟浏览器请求,避免被反爬机制检测
- 图片下载需高效且保证成功率
- 百度图片页面的URL是动态生成的,需要正确分析数据接口
3. 实现步骤
Step 1: 环境准备
pip install requests
pip install beautifulsoup4
Step 2: 分析百度图片URL请求规律
在百度图片页面进行搜索,使用浏览器开发者工具(F12)查看网络请求。可以发现,图片信息是通过特定的JSON接口获取的。通常请求的URL格式如下:
https://image.baidu.com/search/acjson?tn=resultjson_com&logid=XXXXX&ipn=rj&ct=201326592&is=&fp=result&queryWord={keyword}&cl=2&lm=-1&ie=utf-8&oe=utf-8&adpicid=&st=-1&z=&ic=0&word={keyword}&s=&se=&tab=&width=&height=&face=0&istype=2&qc=&nc=1&fr=&pn={page_num}&rn=30
queryWord和word是搜索关键词。pn表示图片页码。rn表示每页图片数量。
Step 3: 编写爬虫代码
以下代码示例展示了如何构建一个百度图片爬虫。该爬虫首先发起HTTP请求获取JSON数据,再解析其中的图片URL,然后逐一下载图片到本地。
import os
import re
import requests
from bs4 import BeautifulSoup
from concurrent.futures import ThreadPoolExecutor# 定义请求头,模拟浏览器行为
headers = {"User-Agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/87.0.4280.66 Safari/537.36"
}# 创建文件夹存储图片
def create_folder(folder_name):if not os.path.exists(folder_name):os.makedirs(folder_name)# 获取图片URL列表
def fetch_image_urls(keyword, page_num):url = f"https://image.baidu.com/search/acjson?tn=resultjson_com&logid=XXXXX&ipn=rj&ct=201326592&is=&fp=result&queryWord={keyword}&cl=2&lm=-1&ie=utf-8&oe=utf-8&adpicid=&st=-1&z=&ic=0&word={keyword}&s=&se=&tab=&width=&height=&face=0&istype=2&qc=&nc=1&fr=&pn={page_num*30}&rn=30"response = requests.get(url, headers=headers)response.encoding = 'utf-8'# 使用正则表达式提取所有图片的URLimg_urls = re.findall(r'"thumbURL":"(http.*?)"', response.text)return img_urls# 下载图片
def download_image(img_url, folder_name):try:img_data = requests.get(img_url, headers=headers).contentimg_name = os.path.join(folder_name, img_url.split('/')[-1])with open(img_name, 'wb') as img_file:img_file.write(img_data)print(f"Downloaded: {img_name}")except Exception as e:print(f"Failed to download {img_url}: {e}")# 主函数,负责获取URL和下载图片
def main(keyword, num_pages, folder_name="images"):create_folder(folder_name)with ThreadPoolExecutor(max_workers=10) as executor:for page_num in range(num_pages):img_urls = fetch_image_urls(keyword, page_num)for img_url in img_urls:executor.submit(download_image, img_url, folder_name)# 执行爬虫
if __name__ == "__main__":search_keyword = "风景" # 可替换成需要的搜索关键词main(search_keyword, num_pages=5)
代码解析
- 请求图片数据:
fetch_image_urls函数构造URL并发起请求,返回包含图片URL的列表。 - 图片下载:
download_image函数负责下载并保存图片,同时使用多线程加速下载过程。 - 多线程下载:
ThreadPoolExecutor用于并行下载图片。
4. 运行代码
运行以上代码后,会在images文件夹下存储批量下载的百度图片。根据网络环境和页面数量,可实现高效的图片下载。
5. 注意事项
- 反爬策略:百度可能会检测异常访问频率导致IP封禁。可以通过减少请求频率、使用代理IP等方式规避反爬。
- 使用代理:在高频请求情况下,建议添加代理池来模拟不同IP访问。
- 延时操作:为避免频繁请求导致的封禁,可以在请求间添加随机延时。
6. 案例总结
以上技术案例展示了如何利用Python爬虫实现大批量百度图片的下载。通过合理构造请求、使用正则表达式解析数据,以及使用多线程提升效率,该爬虫具备较好的性能和可拓展性。
| 步骤编号 | 步骤名称 | 操作说明 | 代码示例 |
|---|---|---|---|
| 1 | 环境准备 | 安装所需的Python库:requests和beautifulsoup4 | pip install requestspip install beautifulsoup4 |
| 2 | 分析请求URL格式 | 使用浏览器开发者工具(F12)观察百度图片页面的网络请求,找到获取图片的接口URL。 | URL示例:https://image.baidu.com/search/acjson?... |
| 3 | 创建图片存储文件夹 | 检查文件夹是否存在,若不存在则创建。 | os.makedirs(folder_name) |
| 4 | 获取图片URL列表 | 构造请求URL,使用正则表达式提取图片URL。 | fetch_image_urls(keyword, page_num) |
| 5 | 下载图片 | 通过图片URL下载图片数据并保存到本地文件夹中。 | download_image(img_url, folder_name) |
| 6 | 多线程并行下载 | 使用ThreadPoolExecutor进行多线程图片下载,提高下载效率。 | executor.submit(download_image, img_url, folder_name) |
| 7 | 执行爬虫 | 调用main()函数,输入关键词和页数,启动爬虫程序,完成图片批量下载。 | main(search_keyword, num_pages=5) |
| 8 | 反爬策略 | 加入延时、代理IP等措施,避免因高频访问被封禁。 | 使用time.sleep() 或代理池 |
| 9 | 案例总结 | 通过Python爬虫实现百度图片批量下载,分析URL结构、多线程加速下载,并总结反爬注意事项。 | - |
相关文章:
爬虫技术——小白入狱案例
知孤云出岫 目录 1. 案例概述2. 案例需求分析3. 实现步骤Step 1: 环境准备Step 2: 分析百度图片URL请求规律Step 3: 编写爬虫代码代码解析 4. 运行代码5. 注意事项6. 案例总结 要实现大批量爬取百度图片,可以使用Python编写一个网络爬虫,通过发送HTTP请求…...
vue 果蔬识别系统百度AI识别vue+springboot java开发、elementui+ echarts+ vant开发
编号:R03-果蔬识别系统 简介:vuespringboot百度AI实现的果蔬识别系统 版本:2025版 视频介绍: vuespringboot百度AI实现的果蔬识别系统前后端java开发,百度识别,带H5移动端,mysql数据库可视化 1 …...
全新更新!Fastreport.NET 2025.1版本发布,提升报告开发体验
在.NET 2025.1版本中,我们带来了巨大的期待功能,进一步简化了报告模板的开发过程。新功能包括通过添加链接报告页面、异步报告准备、HTML段落旋转、代码文本编辑器中的文本搜索、WebReport图像导出等,大幅提升用户体验。 FastReport .NET 是…...
信息学科平台系统设计与实现:Spring Boot技术手册
5系统详细实现 5.1 用户信息管理 基于保密信息学科平台系统的系统管理员可以对用户信息查询。具体界面的展示如图5.1所示。 图5.1 用户信息管理界面 5.2 教师信息管理 管理员可以对教师信息进行查下和删除。具体界面如图5.2所示。 图5.2 教师信息界面 5.3 学科动态管理 管理…...
conda下jupyterlab安装问题以及交互绘图问题记录
安装 1. 直接conda install jupyterlab就好,只要在base环境下安装就行,可以在任意环境下执行jupyter lab启动。 2. 打开jupyter lab后显示Could not determine jupyterlab build status without nodejs,可以执行conda install nodejs安装no…...
尚硅谷react教程_扩展_setState更新状态的2种写法
1.setState setState更新状态的2种写法(1).setState(stateChange,[callback])----对象式的setState1.stateChange为状态改变对象(该对象可以体现出状态的更改)2.callback是可选的回调函数,它在状态更新完毕、界面也更新…...
C语言编写的自动取款机模拟程序
#include〈stdio。h> #include<string。h> #include <stdio.h> #include〈stdlib.h〉 #include〈direct.h〉 #include<io.h> #include 〈errno。h> /********************************************************…...
【常用数据结构】开发中常用的数据结构?
开发中常用的数据结构包括数组、链表、栈、队列、树、图、堆和散列表(哈希表)。这些数据结构在软件开发中有着广泛的应用,并且各自具有独特的特点和用途。 数组 数组是最基本的数据结构之一,用于在内存中连续存储多个元素。数…...
OCC 点云
OCC的基础知识可能还是要系统学习一下,部分导入的模型面类型是很多面都是GeomAbs_BSplineSurface,最终获取参数都要拟合一下,拟合后的生成的面对象没有大小,比如平面只有矢量(大小没有思路) 圆柱拟合面没有…...
方法重写与方法重载
1. 方法重载与方法重写的定义 方法重写(Overriding) 方法重写(Overriding)是指在子类中重新定义与父类中相同的方法。此操作允许子类提供特定的实现,以替代父类的实现。方法重写是实现多态性(Polymorphis…...
Vue3实现地球上加载柱体
最终效果为上图。 实现该技术,需要一些技术,我分别罗列一下: canvas:需要使用canvas根据json来绘制地球,不懂的可以看这篇canvas绘制地球 threejs:需要会使用threejs,这里并没有使用shader&am…...
OpenGL入门003——使用Factory设计模式简化渲染流程
前面两节已经学会了如何使用opengl创建窗口并绘制三角形,我们可以看出有些步骤是固定的,而且都写在main.cpp,这一节我们将了解如何使用Factroy设计模型。将模型渲染逻辑封装在一个单独的类中,简化开发流程,且提高代码复…...
01_AI编程案例展示:借助AI轻松爬取海量网盘链接
爬虫案例展示 今天,我们将展示如何利用AI快速开发一个网络爬虫, 使用的工具是Python和Claude 3.5 Sonnet(国内可用豆包替代) 我们的目标是爬取panhub.fun网站上的夸克网盘链接, 即使你是编程新手,也可以轻松完成这样的任务。 案例1-批量爬取panhub网盘整合包 下…...
【机器学习导引】ch5-神经网络
Q&A 1x1 卷积层在深度学习中的作用? 1x1 卷积层在深度学习中具有几个重要的作用: 通道压缩:1x1卷积可以通过调整输出通道数来减少特征图的深度,从而降低计算成本和参数数量。这有助于在保持特征的情况下简化模型。特征融合&am…...
【Axure原型分享】颜色选择器——填充颜色
今天和大家分享颜色选择器——填充颜色的原型模板,点击颜色区域可以弹出颜色选择器,点击可以选择对应颜色,颜色区域会变色我们选择的颜色,具体效果可以观看下方视频或者打开预览地址体验。 【原型效果】 【Axure高保真原型】颜色…...
怎么安装行星减速电机才是正确的
行星减速电机由于其高效、精密的传动能力,广泛应用于自动化设备、机器人、机床以及其他需要精准控制的领域。正确的安装行星减速电机对于确保设备的性能与延长使用寿命至关重要。 一、前期准备 在进行行星减速电机的安装之前,必须做好充分的前期准备工作…...
Unity程序化生成地形
制作地形: 绘制方块逐个绘制方块并加噪波高度删除Gizmos和逐个绘制 1.draw quad using System.Collections; using System.Collections.Generic; using UnityEngine;[RequireComponent(typeof(MeshFilter))] public class mesh_generator : MonoBehaviour {Mesh m…...
Vxe UI vue vxe-table 表格中使用下拉表格,单元格渲染下拉表格
Vxe UI vue vxe-table 表格中使用下拉表格,单元格渲染下拉表格 单元格中渲染下拉表格,需要使用到 vxe-table-select 这个组件,在 vxe-table 4.7 中使用非常简单,只需要配置好渲染器数据源就可以。 支持单选 也可以多选 代码 …...
Android开发教程实加载中...动效
Android开发教程实加载中…动效 加载中,发送中,匹配中都可以用,就是后面是三个点还是两个点,不断在切换 一、思路: 隔500ms发送一次,改变内容 二、效果图: 看视频更加直观点: An…...
NVR设备ONVIF接入平台EasyCVR视频融合平台智慧小区视频监控系统建设方案
一、方案背景 智慧小区构成了“平安城市”建设的基石。随着社会的进步,社区安全问题逐渐成为公众关注的热点。诸如高空抛物、乱丢垃圾、破坏车辆、入室盗窃等不文明行为和违法行为频繁出现。目前,许多小区的物业管理和安全防护系统仍然较为简单和陈旧&a…...
接口测试中缓存处理策略
在接口测试中,缓存处理策略是一个关键环节,直接影响测试结果的准确性和可靠性。合理的缓存处理策略能够确保测试环境的一致性,避免因缓存数据导致的测试偏差。以下是接口测试中常见的缓存处理策略及其详细说明: 一、缓存处理的核…...
网络六边形受到攻击
大家读完觉得有帮助记得关注和点赞!!! 抽象 现代智能交通系统 (ITS) 的一个关键要求是能够以安全、可靠和匿名的方式从互联车辆和移动设备收集地理参考数据。Nexagon 协议建立在 IETF 定位器/ID 分离协议 (…...
conda相比python好处
Conda 作为 Python 的环境和包管理工具,相比原生 Python 生态(如 pip 虚拟环境)有许多独特优势,尤其在多项目管理、依赖处理和跨平台兼容性等方面表现更优。以下是 Conda 的核心好处: 一、一站式环境管理:…...
盘古信息PCB行业解决方案:以全域场景重构,激活智造新未来
一、破局:PCB行业的时代之问 在数字经济蓬勃发展的浪潮中,PCB(印制电路板)作为 “电子产品之母”,其重要性愈发凸显。随着 5G、人工智能等新兴技术的加速渗透,PCB行业面临着前所未有的挑战与机遇。产品迭代…...
MySQL 隔离级别:脏读、幻读及不可重复读的原理与示例
一、MySQL 隔离级别 MySQL 提供了四种隔离级别,用于控制事务之间的并发访问以及数据的可见性,不同隔离级别对脏读、幻读、不可重复读这几种并发数据问题有着不同的处理方式,具体如下: 隔离级别脏读不可重复读幻读性能特点及锁机制读未提交(READ UNCOMMITTED)允许出现允许…...
FFmpeg 低延迟同屏方案
引言 在实时互动需求激增的当下,无论是在线教育中的师生同屏演示、远程办公的屏幕共享协作,还是游戏直播的画面实时传输,低延迟同屏已成为保障用户体验的核心指标。FFmpeg 作为一款功能强大的多媒体框架,凭借其灵活的编解码、数据…...
微信小程序 - 手机震动
一、界面 <button type"primary" bindtap"shortVibrate">短震动</button> <button type"primary" bindtap"longVibrate">长震动</button> 二、js逻辑代码 注:文档 https://developers.weixin.qq…...
vue3 定时器-定义全局方法 vue+ts
1.创建ts文件 路径:src/utils/timer.ts 完整代码: import { onUnmounted } from vuetype TimerCallback (...args: any[]) > voidexport function useGlobalTimer() {const timers: Map<number, NodeJS.Timeout> new Map()// 创建定时器con…...
视觉slam十四讲实践部分记录——ch2、ch3
ch2 一、使用g++编译.cpp为可执行文件并运行(P30) g++ helloSLAM.cpp ./a.out运行 二、使用cmake编译 mkdir build cd build cmake .. makeCMakeCache.txt 文件仍然指向旧的目录。这表明在源代码目录中可能还存在旧的 CMakeCache.txt 文件,或者在构建过程中仍然引用了旧的路…...
C++:多态机制详解
目录 一. 多态的概念 1.静态多态(编译时多态) 二.动态多态的定义及实现 1.多态的构成条件 2.虚函数 3.虚函数的重写/覆盖 4.虚函数重写的一些其他问题 1).协变 2).析构函数的重写 5.override 和 final关键字 1&#…...
