63 mysql 的 行锁
前言
我们这里来说的就是 我们在 mysql 这边常见的 几种锁
行共享锁, 行排他锁, 表意向共享锁, 表意向排他锁, 表共享锁, 表排他锁
意向共享锁, 意向排他锁, 主要是 为了表粒度的锁获取的同步判断, 提升效率
意向共享锁, 意向排他锁 这边主要的逻辑意义是数据表中是否有任意一行的行共享锁, 行排他锁被获取
假设如下sql “select * from t_user_02 for update;”, 会首先会先尝试获取 t_user_02 的表意向排他锁, 然后再遍历符合条件的每一行记录, 获取每一行记录的 行排他锁
假设如下sql “select * from t_user_02 where id = ‘1’ for update;”, 会首先会先尝试获取 t_user_02 的表意向排他锁, 然后获取 id 为 ‘1’ 的记录的行排他锁
差距就在于 扫描表的记录, 前者需要扫描全表, 后者 只需要扫描 id = ‘1’ 的数据行
之后 我们还会有一个锁粒度 的调试
当然 这里需要区分一些情况, 比如 “select * from t_user_02;” 的查询是无锁查询, “select * from t_user_02 for update;” 是申请排他锁查询, “select * from t_user_02 lock in share mode;” 是申请共享锁查询
在无锁查询的情况下, 是不会去尝试获取 表锁, 行锁 的, 是一直可以查询的
测试数据表如下
CREATE TABLE `t_user_02` (`id` int(11) unsigned NOT NULL AUTO_INCREMENT,`name` varchar(24) DEFAULT NULL,`age` int(11) DEFAULT NULL,PRIMARY KEY (`id`)
) ENGINE=InnoDB AUTO_INCREMENT=7 DEFAULT CHARSET=utf8
t_user_02 的数据列表如下
表意向排他锁
我们这里调试 sql 如下 这里会先获取 t_user_02 的表意向排他锁, 然后再读取的时候在获取 id 为 2 的记录的行排他锁, 我们这里先看 表意向排他锁, 再看行排他锁
begin;
select * from t_user_02 where id = '2' for update;
commit;
获取表意向锁这边是在 row_search_mvcc 中, 这里是属于读取记录之前, 会先尝试获取 t_user_02 的 表意向共享锁 或者 表意向独占锁
获取成功之后会继续往下走获取记录的相关业务流程
获取失败之后, 会挂起当前线程, 等待目标锁可以争取 然后再次尝试获取目标锁
在我们这里只存在 表意向共享锁, 表意向排他锁, 行共享锁, 行排他锁 的场景下面, 获取 表意向共享锁, 表意向排他锁 是恒成功的
获取锁这边处理如下, 判断是否有已经占用的 t_user_02 的表的锁
如果没有可以直接获取给定的 表意向共享锁, 表意向独占锁
如果有判断已经持有的锁是否 和 当前请求的锁兼容, 在我们这里的场景下只考虑 表意向共享锁, 表意向独占锁, 行共享锁, 行独占锁 这里是几种都兼容
表意向共享锁, 表意向排他锁主要是用于 表共享锁, 表排他锁的相关地方的提升效率的处理
然后 第一次迭代以后的迭代是不需要再获取 表意向共享锁, 表意向排他锁 了, 处理的地方如下
第二次 以及以后的迭代, 走的是 ”if(!prebuilt->sql_stat_start)” 中的相关的流程了
表意向共享锁
我们这里调试 sql 如下 这里会先获取 t_user_02 的表意向共享锁, 然后再读取的时候在获取 id 为 2 的记录的行共享锁, 我们这里先看 表意向共享锁, 再看行共享锁
begin;
select * from t_user_02 where id = '1' lock in share mode;
commit;
和上面获取 表意向共享锁 类似的流程, 只是这里获取的 表意向排他锁
在我们这里只存在 表意向共享锁, 表意向排他锁, 行共享锁, 行排他锁 的场景下面, 获取 表意向共享锁, 表意向排他锁 是恒成功的
行排他锁
我们这里调试 sql 如下 这里会先获取 t_user_02 的表意向排他锁, 然后再读取的时候在获取 id 为 2 的记录的行排他锁, 我们这里来看 行排他锁
begin;
select * from t_user_02 where id = '2' for update;
commit;
行共享锁的获取是在 获取了当前行的数据之后, 再来获取的
select 中没有 “for update;”, “lock in share mode;” 的场景是 “prebuilt->select_lock_type == LOCK_NONE” 的场景
我们这里是带 “for update”, 获取 行排他锁
然后 其次就是尝试获取锁之后的处理, 获取成功之后 移动游标, 调用栈返回
如果获取 行排他锁 不成功, 走 lock_wait_or_error, 等待目标锁可以争取 然后再次尝试获取目标锁
行锁的实际这边如下, 分为 fastpath 和 slowpath
行锁这边是以 page 为单位的, 一个 page 公用一把锁, lock 中有 bitmap 来维护每一条记录的锁是否被占用, 以及其他信息
“if(lock == null)” 这里是目标页还没有任何锁的情况, 直接创建锁, 获取锁, 这里可以直接响应 LOCK_REC_SUCCESS_CREATED, 是因为外层 lock_clust_rec_read_check_and_lock 有一个 lock_mutex_enter 有一个全局的同步
然后下面就是 “else if(!impl)” 的处理是如果目标锁是关联当前事务, 尝试直接获取给定的记录的行锁, “lock_rec_set_nth_bit(lock, heap_no)” 就是获取目标记录的行锁
我们再来看一下 slowpath
slowpath 这边主要是 fastpath 尝试获取锁失败的场景下面
如果目标记录已经被其他事务持有和当前目标锁冲突的锁, 则 DB_LOCK_WAIT, 上游 row_search_mvcc 走 wait 的流程
否则 可以尝试获取目标锁, 然后响应给上游 获取锁成功
行共享锁, 和 行排他锁这边的冲突规则主要如下
行共享锁 兼容于行共享锁, 行共享锁 不兼容于 行排他锁
行排他锁 不兼容于 行共享锁, 行排他锁 不兼容于 行排他锁
行共享锁
我们这里调试 sql 如下 这里会先获取 t_user_02 的表意向共享锁, 然后再读取的时候在获取 id 为 2 的记录的行共享锁, 我们这里看 行共享锁
begin;
select * from t_user_02 where id = '1' lock in share mode;
commit;
和获取 行排他锁的流程基本上一致, 这里不多赘述
行锁锁索引字段的情况
我们这里更新测试表结构如下
CREATE TABLE `tz_test_04` (`id` int(11) unsigned NOT NULL AUTO_INCREMENT,`field1` varchar(128) DEFAULT NULL,`field2` varchar(128) DEFAULT NULL,PRIMARY KEY (`id`) USING BTREE,KEY `field_1_2` (`field1`) USING BTREE
) ENGINE=InnoDB AUTO_INCREMENT=11 DEFAULT CHARSET=utf8
然后执行 sql 如下 “select * from tz_test_04 where field1 = 'field5' for update;”
从 row_search_mvcc 这里的上下文可以看出当前 rec 是一条索引记录, 然后 后面走的流程 锁定的也是这部分满足条件的索引记录
因此 后面需要尝试获取索引记录的锁的情况, 如果锁不兼容, 则会阻塞
这是在索引匹配 field1 = ‘field5’ 的记录上面增加的索引的 行临键锁, 然后 它还会在具体的数据记录上面增加 行排他锁, 在下一个索引记录上面增加 间隙锁
在数据记录上面增加 行排他锁, 这里的 clust_rec 表示的是具体的数据记录, rec 表示是当前索引记录
遍历到不匹配 field1 = ‘field5’ 的第一个索引的地方, 在该记录上面增加了一个 间隙锁
因此如下 三个 sql 都会阻塞, 第一行是 获取索引的行排他锁 冲突, 第二行是 获取数据的行排他锁冲突, 第三行是与在索引 field1=’field9’ 上面的间隙锁冲突
第四行, 第五行是与在索引 field1=’field5’ 上面的临键锁冲突
select * from tz_test_04 where field1 = 'field5' for update;
select * from tz_test_04 where id = 5 for update;
INSERT INTO `test_02`.`tz_test_04`(`id`, `field1`, `field2`) VALUES (15, 'field8', '8');
INSERT INTO `test_02`.`tz_test_04`(`id`, `field1`, `field2`) VALUES (8, 'field3', '3');
INSERT INTO `test_02`.`tz_test_04`(`id`, `field1`, `field2`) VALUES (8, 'field5', '5');
行锁锁非索引字段的情况
我们这里更新测试表结构如下
CREATE TABLE `tz_test_04` (`id` int(11) unsigned NOT NULL AUTO_INCREMENT,`field1` varchar(128) DEFAULT NULL,`field2` varchar(128) DEFAULT NULL,PRIMARY KEY (`id`) USING BTREE,KEY `field_1_2` (`field1`) USING BTREE
) ENGINE=InnoDB AUTO_INCREMENT=11 DEFAULT CHARSET=utf8
然后执行 sql 如下 “select * from tz_test_04 where field2 = '5' for update;”
如果是根据 非索引字段查询, 则会进行全表扫描, 会在所有的行上面增加 行临键锁
在 row_search_mvcc 中输出各个断点位置的 rec 信息如下, 即为各个 记录的信息
行排他锁阻塞的 N 种方式
假设我们这里尝试模拟 各种阻塞的方式, 事务1先进行执行, 然后事务2尝试获取行排他锁, 产生阻塞
事务2 这边执行固定的 sql 语句如下
begin;
select * from t_user_02 where id = '2' for update;
-- sleep 10min
commit;
事务1获取 表共享锁 导致 事务2 获取 MDL元数据锁 阻塞
begin;
lock tables t_user_02 read;
-- sleep 10min
unlock tables;
commit;
事务1获取 表排他锁 导致 事务2 获取 MDL元数据锁 阻塞
begin;
lock tables t_user_02 write;
-- sleep 10min
unlock tables;
commit;
事务1 获取行共享锁 导致 事务2 获取 行排他锁 阻塞
begin;
select * from t_user_02 where id = '2' lock in share mode;
-- sleep 10min
commit;
事务1 获取行排他锁 导致 事务2 获取 行排他锁 阻塞
begin;
select * from t_user_02 where id = '2' for update;
-- sleep 10min
commit;
行共享锁阻塞的 N 种方式
假设我们这里尝试模拟 各种阻塞的方式, 事务1先进行执行, 然后事务2尝试获取行共享锁, 产生阻塞
事务2 这边执行固定的 sql 语句如下
begin;
select * from t_user_02 where id = '2' lock in share mode;
commit;
事务1获取 表排他锁 导致 事务2 获取 MDL元数据锁 阻塞
begin;
lock tables t_user_02 write;
-- sleep 10min
unlock tables;
commit;
事务1 获取行排他锁 导致 事务2 获取 行排他锁 阻塞
begin;
select * from t_user_02 where id = '2' for update;
-- sleep 10min
commit;
where 1 = 1 for update 和 where id = 1 for update 的区别
首先是都会获取 表意向排他锁
首先来看一下 “where 1 = 1 for update” 情况下的一个获取锁的处理
然后 我们这里讨论的主要是 行排他锁 的获取的差异
是会走 “else if (!impl)” 然后里面的这个 get + set
比如这里获取的是 第三条记录的 行排他锁, 会设置 bitmap 的第三位, 更新之后 (lock+1) 会变成 0x04 | 0x08 = 0x0c
这个获取了所有记录的行锁 逻辑意义上 等价于获取了表锁, 但是 实际的实现二者又是有一定的区别的
同理, 这里是获取 第四条记录的 行排他锁
这里从当前状态可以看到 (lock+1) 为 0x0c, 表示获取了 第二条记录, 第三条记录 的 行排他锁
本次更新调整了之后, (lock + 1) 会变成 0x0c | 0x10 = 0x1c
获取第五条记录的 行排他锁 的情况如下, 这里就不在继续 向下赘述了
再来看一下 “where id = 1 for update” 情况下的一个获取锁的处理
这里限定的是 id, 只会获取到一条记录, 因此这里只会走 RecLock 初始化的这部分处理
完
相关文章:

63 mysql 的 行锁
前言 我们这里来说的就是 我们在 mysql 这边常见的 几种锁 行共享锁, 行排他锁, 表意向共享锁, 表意向排他锁, 表共享锁, 表排他锁 意向共享锁, 意向排他锁, 主要是 为了表粒度的锁获取的同步判断, 提升效率 意向共享锁, 意向排他锁 这边主要的逻辑意义是数据表中是否有任…...
ubuntu文件编辑操作
Vim 基本操作指南 在 vim 中打开文件后,可以按照以下步骤进行编辑和保存: 进入插入模式 打开文件后,默认情况下 vim 处于命令模式,无法直接输入文本。按下 i 键进入插入模式(会看到左下角显示 -- INSERT --࿰…...

Nuxt.js 应用中的 nitro:config 事件钩子详解
title: Nuxt.js 应用中的 nitro:config 事件钩子详解 date: 2024/11/2 updated: 2024/11/2 author: cmdragon excerpt: nitro:config 是 Nuxt 3 中的一个生命周期钩子,允许开发者在初始化 Nitro 之前自定义 Nitro 的配置。Nitro 是 Nuxt 3 的服务器引擎,负责处理请求、渲…...
【前端】项目中遇到的问题汇总(长期更新)
一、联调交互类 1、出现一个数据在当前页面进行了修改,另外一个页面的同一数据并未同步更改 当前的数据经过调用接口修改更新以后,if(code 200) 将当前数据存入store.dispatch, 然后另一个地方获取该数据,直接获取存入的数据,这…...

DAY73WEB 攻防-支付逻辑篇篡改属性值并发签约越权盗用算法溢出替换对冲
知识点: 1、支付逻辑-商品本身-修改-数量&价格&属性等 2、支付逻辑-营销折扣-优惠券&积分&签约&试用等 3、支付逻辑-订单接口-替换&并发&状态值&越权支付等 支付逻辑常见测试: 熟悉常见支付流程:选择商品…...

2024 Rust现代实用教程:Ownership与结构体、枚举
文章目录 一、Rust的内存管理模型1.GC(Stop the world)2.C/C内存错误大全3.Rust的内存管理模型 二、String与&str1.String与&str如何选择2.Example 三、枚举与匹配模式1.常见的枚举类型:Option和Result2.匹配模式 四、结构体、方法、…...

MMed-RAG:专为医学视觉语言模型设计的多功能多模态系统
MMed-RAG:专为医学视觉语言模型设计的多功能多模态系统 论文大纲提出背景全流程优化空雨伞分析空:观察现象层雨:分析原因层伞:解决方案层 三问分析WHAT - 问题是什么?WHY - 原因是什么?HOW - 如何解决&…...
数据采集(全量采集和增量采集)
全量采集:采集全部数据 3、全量采集 vim students_all.json {"job": {"setting": {"speed": {"channel": 1},"errorLimit": {"record": 0,"percentage": 0.02}},"content": [{…...

GPT-Sovits-1-数据处理
1.1 切割音频 将音频切割为多个10s内的片段 1.2 降噪 这一步用的是modelscope的pipeline 如果要去除背景音,可以用傅立叶转为为频谱,去除低频部分后再转回来 1.3 提取音频特征 这里用到了 funasr 库 这一步目的是输出音频样本的《文本标签文件》&am…...

web前端多媒体标签设置(图片,视频,音频)以及图片热区(usemap)的设置
多媒体标签运用 在HTML中有以下常见多媒体标签: <img> (图像标签) - 作用:用于在网页中嵌入图像。 - 示例: <img src"image.jpg" alt"这是一张图片"> 。其中 src 属性指定图像的…...
尚硅谷react教程_扩展_stateHook
1.类式组件写 import React, {Component} from react;export default class Demo extends Component {state {count:0}add () > {this.setState(state>({count:state.count1}))}render() {return (<div><h2>当前求和为{this.state.count}</h2><b…...

专线物流公共服务平台:数据驱动,标准引领,共创金融双赢新时代
专线物流公共服务平台:数据驱动,标准引领,共创金融双赢新时代 在当今这个数据驱动、标准引领、金融赋能的经济发展新时代,专线物流作为商贸流通领域的重要一环,正面临着前所未有的机遇与挑战。为应对复杂多变的市场环…...

界面控件DevExpress JS ASP.NET Core v24.1亮点 - 支持Angular 18
DevExtreme拥有高性能的HTML5 / JavaScript小部件集合,使您可以利用现代Web开发堆栈(包括React,Angular,ASP.NET Core,jQuery,Knockout等)构建交互式的Web应用程序。从Angular和Reac,…...

Spring之依赖注入(DI)和控制反转(IoC)——配置文件、纯注解
依赖注入 依赖注入(Dependency Injection,简称 DI)与控制反转(loC)的含义相同,只不过这两 个称呼是从两个角度描述的同一个概念。对于一个 Spring 初学者来说,这两种称呼很难理解, 下面我们将通过简单的语言来描述这两个概念。 当Java对象&…...

基于SpringBoot的宠物健康咨询系统的设计与实现
摘 要 传统信息的管理大部分依赖于管理人员的手工登记与管理,然而,随着近些年信息技术的迅猛发展,让许多比较老套的信息管理模式进行了更新迭代,宠物健康知识信息因为其管理内容繁杂,管理数量繁多导致手工进行处理不…...

Lucene的使用方法与Luke工具(2)
文章目录 第2章 Lucene快速入门2.1 项目搭建2.1.1 SQL语句2.1.2 maven依赖2.1.3 实体类:2.1.4 编写DAO: 2.2 建立索引2.2.1 步骤:2.2.2 实现代码: 2.3 Luke工具2.3.1 运行界面介绍:1)主界面2)文…...
【客户端开发】electron 中无法使用 js-cookie 的问题
产生问题的原因 谷歌浏览器升级之后,出于安全考虑,cookie的SameSite属性默认值由None变为Lax,对于跨域的请求,禁止携带cookie。electron内核是chromium内核,所以也会有这个限制。 Cookie的SameSite属性用来限制第三方 Cookie&…...
kafka客户端消费者吞吐量优化
问题背景 业务场景 mq消息消费实时性要求不高,期望可以牺牲一部分实时性,换取吞吐量,例如:数据库单条insert优化为batchInsert。优化后结果不符合预期:消费者消费消息的batchSize远小于实际配置的max.poll.records&a…...

电子工程师-高质量工具包
目录 来源 高质量工具包介绍 总体框架如下 ZL01-各类元器件相关资料 ZL02-电源设计资料 ZL03-大厂参考资料 ZL04-开发工具 ZL05-仿真工具 ZL06-各类电路接口设计指南 ZL07-付费专栏全集 ZL08-优质电子书 ZL09-硬件工程师 ZL10FPGA工程师教程 ZL10-PCB设计教程 Z…...
简单认识redis - 12 redis锁
在斜体样式**redis中,不同的问题有不一样的解决办法,那么锁也有不同的锁来解决不一样的问题,下面将举出几个常用的redis锁。 1. SETNX锁(简单独占锁) 原理: SETNX(SET if Not eXistsÿ…...
限流算法java实现
参考教程:2小时吃透4种分布式限流算法 1.计数器限流 public class CounterLimiter {// 开始时间private static long startTime System.currentTimeMillis();// 时间间隔,单位为msprivate long interval 1000L;// 限制访问次数private int limitCount…...

AI智能体,为美业后端供应链注入“智慧因子”(4/6)
摘要:本文深入剖析美业后端供应链现状,其产品具有多样性、更新换代快等特点,原料供应和生产环节也面临诸多挑战。AI 智能体的登场为美业后端供应链带来变革,包括精准需求预测、智能化库存管理、优化生产计划排程、升级供应商管理等…...
OpenWrt:使用ALSA实现边录边播
ALSA是Linux系统中的高级音频架构(Advanced Linux Sound Architecture)。目前已经成为了linux的主流音频体系结构,想了解更多的关于ALSA的知识,详见:http://www.alsa-project.org 在内核设备驱动层,ALSA提供…...

TDengine 开发指南——无模式写入
简介 在物联网应用中,为了实现自动化管理、业务分析和设备监控等多种功能,通常需要采集大量的数据项。然而,由于应用逻辑的版本升级和设备自身的硬件调整等原因,数据采集项可能会频繁发生变化。为了应对这种挑战,TDen…...
图论水题2
div2 361 D. Tree Requests 题意 对于一颗 n n n节点的树,每个节点有一个字母,有 m m m次询问,每次询问求对于顶点 v v v的子树中深度为 h h h的结点能否组成一个回文串$ (1 \leq n \leq m \leq 5 \cdot 10^5) $ 思路 关于 v v v的子树结…...

WebRTC通话原理与入门难度实战指南
波煮的实习公司主要是音视频业务,所以最近在补习WebRTC的相关内容,会不定期给大家分享学习心得和笔记。 文章目录 WebRTC通话原理进行媒体协商:彼此要了解对方支持的媒体格式网络协商:彼此要了解对方的网络情况,这样才…...
Vue-Todo-list 案例
一、前言 在前端开发中,Todo List(待办事项列表) 是一个非常经典的入门项目。它涵盖了组件化思想、数据绑定、事件处理、本地存储等核心知识点,非常适合用来练习 Vue 的基本用法。 本文将带你一步步实现一个功能完整的 Vue Todo…...

【Linux】LInux下第一个程序:进度条
前言: 在前面的文章中我们学习了LInux的基础指令 【Linux】初见,基础指令-CSDN博客【Linux】初见,基础指令(续)-CSDN博客 学习了vim编辑器【Linux】vim编辑器_linux vim insert-CSDN博客 学习了gcc/g【Linux】编译器gc…...

手拉手处理RuoYi脚手架常见文问题
若依前后端分离版开发入门 基础环境:JDK1.8mysqlRedisMavenVue 取消登录验证码 后端 修改ruoyi-ui项目中的login.vue 在ruoyi-ui项目>src>views中找到login.vue文件 1、注释验证码展示及录入部分 2、 注释code必填校验,默认验证码开关为false …...

Python分形几何可视化—— 复数迭代、L系统与生物分形模拟
Python分形几何可视化—— 复数迭代、L系统与生物分形模拟 本节将深入探索分形几何的奇妙世界,实现Mandelbrot集生成器和L系统分形树工具,并通过肺部血管分形案例展示分形在医学领域的应用。我们将使用Python的NumPy进行高效计算,结合Matplo…...