当前位置: 首页 > news >正文

5G三大应用场景中的URLLC

5G三大应用场景中的URLLC
5G三大应用场景中的URLLC
1 Urllc不是一个独立的技术,更不是一张独立的网络,他是5G所谓的新空口标准NR(New Radio)中,涉及大规模降低时延、提高可靠性的相关技术;
2 Urllc在目前的5G标准演进中,尚未有可以落地(即完成标准化仿真和认证指标确立)的技术细项,截至2018年底的R15,基本都是协议草稿和原始提案,乱得一B,别说外行了,我看得都头晕;
3 Urllc如果说相比较于之前的R14版本(LTE evolution)有些体现,主要是两点,一个是随着NR标准确立之后,一些明显能改善空口时延的特性,比如短符号周期Short Symbol,短的调度周期TTI等等,这是NR敢说自己空口时延能落到5ms以下(1ms最佳理论)的资本;另一个是发源于R14的LTE-v2x技术体系(注意这里是基于LTE的V2X,还不是NR-V2X),这个引人注目的车联网技术虽然实际没有落地,但是他要解决的问题和实际面临的部署场景,还是在他那个阶段(2016-17年)提出了不少具体的对于空中接口的增强需求,比如:
3.1 低时延,更短的调度周期;
3.2 低时延,提供直接的V to V的无线接口(广播),放弃寻址,放弃基站转发,直接实现车辆到车辆的信息互通;
3.3 低时延,提供新的调度方法,尽可能压缩因为调度所导致的时延;
3.3 高可靠性,更好的对抗多普勒频率偏移的机制,满足相对速度300km/h需求;
3.4 高可靠性,更可靠的空中接口,采用更高密度的DMRS(一种参考解调信号),会让空中接口的解调质量更高,误码率更低;
3.5 高可靠性,更好的数据重传机制,可以针对这种高速复杂电磁空间,尽可能快地把误码重传在更低的网络层次上完成;

4 因为去年的主标准版本R15,主要是针对eMBB设计,主要还是满足超宽带的需求,因为这个时期中,这个比较博人眼球,也比较利于5G的尽快推广和落地(所以才有美国Verizon的换标5G),所以其它关于urllc,和其最典型应用的V2X,就几乎没进展,很可惜;但是今年的R16,一定会在这方面发力的,去年的欠账都会加倍奉还;
5 至于你提到的其他方面,比如对抗恶劣环境的具体措施,标准内包含完善的评估手段提供给运营商和设备厂家做benchmark,但相对具体的标准措施,还会再晚一些,有个先后次序的问题;
6 最后说几句关于自动驾驶中,5G应该扮演何种角色的问题。这个是仁者见仁智者见智的问题,从标准角度看我们确实给出了…
computer restarting
OK for restarting-----
从现在的标准看,从LTE-V2X开始,3GPP一直是现有应用需求,再在应用需求所对应的技术边界之内找具体的实现方法的,这是个严谨的思路,也基本避免了“闭门造车”的情况出现,这个系统的方法论,一直工作的很好,毕竟网络投资是非常惊人的,慎重总是没错的;但我觉得现在的问题是,无线网络的发展终于来到了一个分水岭,3GPP在互联世界当中扮演的角色,管道化越来越严重,具体体现就是对于无线网络应用的距离感越来越强,也越来越外行了。无数例证已经可以证明这一点,3GPP和其背后的运营商和设备制造商,最终会回归“管道商”的基础定位,而无法继续兼职扮演“应用提供商”的角色。现在当下最直白的就是车联网,别说3GPP为代表的通讯界,就是汽车行业自己也没有一个明确的目标,整体感觉就是一个乱字了得,各说各道理,听起来都有点道理,但实际上未必就是最终答案。就比如老杨同志(杨学志同志),也只是一个固定通讯人对于车联网的思考,有他的价值,但肯定不全面,更显武断。
我举个栗子,NR-V2X的车联网应用建议里,上来就是车辆编队(plantooning)和远程驾驶(RC),这些企图彻底旁路目前单车智能的粗暴替代,看起来很美好,但确实很难落地,那这种应用来作为车联网的当下目标来讨论,吵过来吵过去的,没有任何意义。车联网的部署成本,包括设备成本、覆盖难度、优化难度、IOT难度…等等这些巨大的成本,可能不会被传统的无线网络模式所分担多少,毕竟标准的5G网络还是沿着住宅区和办公区进行建立和优化的。在这个基础上漫山遍野跨山跨海去覆盖各级公路体系,你当国家财政是太平洋里捞出来的,取之不尽用之不竭吗?
所以更现实的需求,还是交通整体流量信息的泛化普及、紧急路况信息的跨视距周知…等等类似弥补传感器不足的辅助性需求,最多能在单车的自动控制算法里做一个带系数的参数,数据融合之后被用作最终决策。这是最佳落地。
大一统的大心脏,通过车联网’的单点指挥全局,这种王道,现在看,真的还早。
编辑于 2019-03-12 16:47
​赞同 46​​11 条评论
​分享
​收藏​喜欢

收起​

吃西兰花王
不拘一格
​ 关注
32 人赞同了该回答
URLLC究竟U到了什么程度?我也来强答一波。
结论先行,在我看来,URLLC空口的可靠性来自于以下几点:
1.偏保守的自适应编码调制
URLLC采用与eMBB不同的低频谱效率编码调制映射表,简单来说,相同的信道条件下,URLLC的自适应编码调制结果更趋保守,比如相同的MCS,eMBB的调制方式可能为64QAM,而URLLC就可能为16QAM甚至QPSK,更低的调制方式带来了更粗犷的星座粒度,增强了物理层调制解调的容错性,提升了可靠性。调制方式相同的情形下,URLLC的编码效率也更低,通过加入更多的冗余,增强了编解码过程的纠错与合并能力,提升了可靠性。此外,URLLC对调制编码方式MCS的升阶迟钝而降阶敏感、动态调整TA测量与TAC调整周期,支持受限的传输模式等,都对可靠性产生或多或少的增益。
2.URLLC承载高于eMBB专有传输的优先级
URLLC的调度优先级高于eMBB的专有传输,当两者空口时频域资源发生冲突时,优先保证URLLC业务的传输,并通过特殊的下行控制指示(DCI2-1)通知用户设备(UE)。这种资源抢占机制使URLLC数据以相当高的优先级发送,在不得已的情况下,牺牲eMBB的传输也要保障URLLC数据稳定发送,提升可靠性。
除了空口抢占,对无线带宽的半静态复用也可以作为保障URLLC高可靠的手段之一,在配置中直接预留好一定的时频域资源划拨给URLLC,就算URLLC工作的占空比低导致预留资源空闲,也不会将这部分带宽提供给eMBB,充分考虑URLLC业务的突发特性,使其能够在Minislot级别的时间粒度上高速响应调度需求。
另外,5G中URLLC作为一种特殊承载,通常采用独立的基带切片进行部署,与eMBB隔离,从软硬件资源上保证URLLC业务的调度不受挤压,最大程度保障应用可靠性。
3.高密度分布的导频
eMBB场景中支持单符号或双符号的前置解调参考信号(Front-Load DMRS),支持2符号的附加解调参考信号(Additional DMRS),可以在一个调度间隙(TTI/Slot)中同时存在3个符号的DMRS,帮助物理层解调。DMRS作为一种辅助解调的参考信号,本身会占用一定的空口资源,部署的多了,自然会导致可用带宽下降。之所以会配置如此多的DMRS,是因为信道的时变特性,一个调度间隙有14个可用符号,前面的DMRS无法准确地体现后面符号的信道特征,不利于物理层解调,因此就有了一个调度间隙中后面符号嵌入的附加DMRS,协助后方符号的解调处理。
对于URLLC,通过配置密度更大的DMRS导频,来保证其可靠性。以2符号(可变)组成的Minislot为例,给每个Minislot的第一个符号都配置DMRS,本符号交织的PDSCH资源自不必说,对一个Minislot级别的调度而言,感知影响解调的信道特征变化的时间延迟,缩短为一个符号,提了物理层解调的能力,保证可靠性。
4.传输的重复机制
在LTE的eMTC中,已经引入了重复的机制,重复与重传不同,没有(混合)前向纠错机制(HARQ/ARQ)的参与,每次重复也就没有RV版本的差异,重复是对同一份数据多次的传输,通过这种方式,保证收端可以正确接受。URLLC场景也引入重复机制,这种传输方式非常适合URLLC高可靠、小数据包的应用特性,能够在重复中尽最大可能完成数据的正确收发。
5.URLLC应用频点低
电磁波的频点越低,那么波长就越长,衍射散射反射能力越高,空口对信道恶化的容忍能力就越好,否则反之。5G的频点可以在数百MHZ到数GHZ之间部署,URLLC为了追求更大的可靠性,考虑配置在更低的频段中,获取更加平坦的信道衰落特征,在相同的外部环境中,拿到低频点带来的空口可靠性增益。低频点还可以提升覆盖范围,毕竟不停的在小区间切换带来的不可控因素也是URLLC不能容忍的。
但是,更低的频点,意味着时间更长的调度间隙,这在一定程度上会带来时延的增加,对于URLLC的时延和可靠性,不仅在频点高低部署上是一对矛盾体,在其他很多方面都需要权衡舍得的过程,这是无法避免的。
6.无线资源频选
5G应用带来了更大的带宽,以Sub-3.5G常见频段为例,可能拥有超过270个RB,跨越100MHZ的带宽,信道(包括干扰、衰落、信噪比)在频域上的差异会比LTE体现得更加显著,那么是否可以通过频选的方式,把最干净、信道条件最好的RB资源留给URLLC呢?答案是肯定的,这种手段从一定程度上会保证URLLC的可靠性,代价就是基带处理的复杂度上升,对于URLLC这种时延敏感的应用模型可能存在负面影响,不过总有办法可以通过在线、离线计算分离的方式进行实现,总体来说是可以考虑的。
大概先想了这几点,其实提升URLLC可靠性的手段还有很多,这算是抛砖引玉,后面我也会继续补充。
最后,URLLC的U到底有多U?
99.999%的接入终端在99.999%的时间内以99.999%可靠性进行通信。
这,是一个梦想。
发布于 2019-04-02 13:22
​赞同 32​​8 条评论
​分享
​收藏​喜欢

收起​

赤道羽绒服
敬畏工作和生活
​ 关注
2 人赞同了该回答
前面两位答主已经从协议标准层面上做了阐述。我从网络覆盖和环境的角度来说说这个“U”是有多困难。
无线是不可靠的
无线网络天生就被认定是不可靠的,所以在网络传输协议设计的时候会充分考虑空口重传,所谓的“空口重传”就是无线网络层单独考虑一套重传机制,比如使用TCP/IP进行网络报文传输时,除了TCP的重传外,空口链路也有一套重传机制,以保障报文的成功传输。无论是NR还是LTE都会有这一套机制。无线网络的不可靠源于无线环境的不稳定。
1.传输链路的影响
从基站到终端,无线链路受到慢衰落和快衰落的影响。慢衰落可以在链路预算增加余量来考虑抵消,但终端大部分都是移动的,遇到信号突变的情况经常遇到,这个对移动终端的超低时延往往是致命的。而且现在这个阶段对多基站无切换组网还没有实质的进展,切换带来的影响也要考虑在内。
至于问题中问到的低时延相对采取的策略和一些评估手段,目前来看,大部分的NR商用网络规划中都没有拿URLLC来做规划指标的,现在来看商用网络中,还是eMBB这个层面的应用,故大多数NR网络覆盖规划还是老一套以边缘速率和平均速率的衡量为主。
2.干扰的影响
无线网络是一个“开放”的网络,尽管NR应用MASSIVE MIMO技术,波束应用比起4G时代有了很大的创新,但是波束之间的干扰,基站之间的干扰,终端之间的干扰,不同系统之间的干扰依然是很头痛的问题。

未来的低时延网络我认为应该是在低频段网络中单独划出一段频率,做全网的超级小区,解决覆盖、切换等问题。
发布于 2020-04-06 09:44
​赞同 2​​添加评论
​分享
​收藏​喜欢

开元大叔叔

信息技术行业 从业人员
​ 关注
1 人赞同了该回答
前面文章介绍过,5G的初期定义的应用场景包括了3类,这里也重申一下:
eMBB:即为enhanced mobile broadband,提供高速率长的数据传输,可以看做是当前LTE网络的升级换代系统。
mMTC:即massive Machine Type Communications ,也就是物联网技术,用户数量庞大,延迟要求不高,数据量通常不大,但是要求电池的寿命比较长,覆盖的强壮性比较好。
URLLC:即Ultra-reliable low latency communication ,要求极低延迟,极高可靠性。延迟需要小于1ms,可靠性为99.99%甚至更高。
从长远看,三类场景中mMTC与URLLC才是蜂窝通信的未来,光靠eMBB的话这个产业已经是日薄西山了。而且5G作为平台,还可能开发出其他更为精彩的应用场景。
URLLC的用途很多,主要有下面列出的几种。随着各垂直行业的参与,期待更多的相关应用也在人们的想象过程中出现:
VR/AR:即虚拟现实与增强现实,这类业务应用需要极低的延迟,URLLC在这类应用中将扮演非常重要的角色以增强最终用户的业务感知。
自动驾驶汽车:自驾汽车将使用CV2X进行相互通信,这一功能在4G中也存在,但延迟是其主要的问题。而5G将通过提供非常低的延迟和非常高的可靠性来提供网络基础设施。R15中定义了一些基本的V2X的协议,而在R16版中,我们看到了CV2X的一些增强功能。
自动工厂与自动库房。
那么URLLC是如何做到低延迟且高可靠性的呢?这需要底层的多个方面的共同合作。本文就根据资料及3GPP R15、R16规范的基础做个小结供大家参考。
首先是5G定义了丰富的帧结构,具体可参见本号文章,本文不再赘述:
当前尘埃初定的5G空口基本帧结构和物理层骨架
5G NR 物理层协议结构小结(准冻结部分)
5G无线帧结构与空口物理层资源
在4G LTE网络中使用1ms作为TTI,对于某些业务来说延迟稍大,同时n+4的HARQ反馈周期也进一步增大了延迟。为了在4G的基础上改善延迟需要做的可以有如下思路:
.使用更短的TTI;
.在短于4ms的时间内发送HARQ反馈信息。

相关文章:

5G三大应用场景中的URLLC

5G三大应用场景中的URLLC 5G三大应用场景中的URLLC 1 Urllc不是一个独立的技术,更不是一张独立的网络,他是5G所谓的新空口标准NR(New Radio)中,涉及大规模降低时延、提高可靠性的相关技术; 2 Urllc在目前的…...

PyMOL中常用的命令列表

PyMOL中常用的命令列表 PyMOL中常用的命令列表,包括了加载文件、去除水分子、改变颜色、显示样式和图形优化等操作,可以帮助你完成全方位的分子展示设置。 基础命令流程 加载分子结构 load your_file.pdb # 加载PDB文件去除水分子 remove solvent …...

坏块处理 ORA-01578: ORACLE data block corrupted (file # 3, block # 152588)

帮客户检查环境时,发现sysaux表空间的数据文件有坏块,8月25日发生的,备份保留3个月,直接恢复处理。 rman备份log报错如下 RMAN-00571: RMAN-00569: ERROR MESSAGE STACK FOLLOWS RMAN-00571: RMAN-03009: failure of backu…...

像`npm i`作为`npm install`的简写一样,使用`pdm i`作为`pdm install`的简写

只需安装插件pdm-plugin-i即可: pdm plugin add pdm-plugin-i 然后就可以愉快地pdm i了,例如: git clone https://github.com/waketzheng/fast-dev-cli cd fast-dev-cli python -m pip install --user pipx pipx install pdm pdm plugin a…...

DNS域名解析服务器--RHCE

1.DNS简介 DNS ( Domain Name System )是互联网上的一项服务,它作为将域名和 IP 地址相互映射的一个分布式 数据库,能够使人更方便的访问互联网 DNS 系统使用的是网络的查询,那么自然需要有监听的 port 。 DNS 使用的是…...

数据库物化视图的工作原理与Java实现

引言 物化视图(Materialized View)是数据库中一种特殊的对象,它存储了查询结果的物理副本,使得复杂查询的结果可以快速地被访问。本文将详细介绍物化视图的工作原理、技术策略,并提供Java代码示例。 1. 物化视图的基…...

炫酷的登录框!(附源码)

大家想看什么前端效果请留言 预览效果 源码 <!DOCTYPE html> <html lang"zh"> <head><meta charset"UTF-8"><meta name"viewport" content"widthdevice-width, initial-scale1.0"><title>登录页…...

使用Python实现智能生态系统监测与保护的深度学习模型

随着人类活动的增加,生态系统受到的威胁也在不断加剧。为了更好地保护我们的生态环境,智能生态系统监测与保护成为了一项重要的任务。通过深度学习技术,我们可以实现生态系统的自动化监测与管理,从而及时发现和应对环境变化。本文将详细介绍如何使用Python构建一个深度学习…...

Rust 力扣 - 54. 螺旋矩阵

文章目录 题目描述题解思路题解代码题目链接 题目描述 题解思路 我们只需要一圈一圈的从外向内遍历矩阵&#xff0c;每一圈遍历顺序为上边、右边、下边、左边 我们需要注意的是如果上边与下边重合或者是右边与左边重合&#xff0c;我们只需要遍历上边、右边即可 题解代码 i…...

Flutter 简述(1)

Flutter 简述 简述 Flutter是Google开源的应用框架&#xff0c;只要一套代码兼顾Android、iOS、Web、Windows、macOS和Linux六个平台&#xff0c;它的设计思路可以说更加先进&#xff0c;不像ReactNative每个组件都需要有对应的原生组件实现&#xff0c;而是通过skia或者其他…...

BGP实验--BGP路由反射器

AR1、AR2上的Loopback 1接口分别为10.1.1.1/24、10.2.2.2/24&#xff0c;用于模拟用户网段 所有设备均使用Loopback 0地址为BGP Router ID&#xff0c;AR1与AR2、AR2与AR3、AR3与AR4、AR4与AR2之间基于直连接口建立IBGP对等体关系&#xff0c;其中AR1为AR2的路由反射器客户端&a…...

域渗透-域环境部署

01-域渗透部署 一、工作组和域 1、为什么需要域 在早期Windows主机都是属于工作组网络&#xff0c;单独的个体&#xff0c;在企业环境中&#xff0c;针对于工作组网络的计算机要达到统一管理相当麻烦&#xff0c;为实现将一个企业中所有的用户和计算机进行集中管理&#xff…...

【Oracle】空格单字符通配符查询匹配失败

问题 在进行模糊查询的时候&#xff0c;通过全局任意字符串匹配出含有两个字刘姓的人&#xff0c;但是通过刘_不能匹配出结果。 解决 检查后发现&#xff0c;姓名中包含空格 SELECT * FROM student WHERE TRIM(sname) LIKE 刘_;第一种解决方案就是查询的时候进行去空格处理&a…...

uniapp实现中间平滑凸起tabbar

uniapp实现中间平滑凸起tabbar 背景实现思路代码实现尾巴 背景 在移动端开发中&#xff0c;tabar是一个使用频率很高的组件&#xff0c;几乎是每个APP都会用到。今天给大家分享一个中间平滑凸起的tabbar组件&#xff0c;有需要的可以做下参考。先上图镇楼&#xff1a; 实现思…...

【视频】OpenCV:识别颜色、绘制轮廓

1、安装OpenCV库 sudo apt install libopencv-dev2、链接库 将 OpenCV 头文件路径和库添加到CMake中,在 CMakeLists.txt 中添加 1)查找库 find_package(OpenCV REQUIRED) 或者 find_package(OpenCV REQUIRED core imgproc highgui) 2)添加头文件路径 include_directories…...

C++_STL_xx_番外01_关于STL的总结(常见容器的总结;关联式容器分类及特点;二叉树、二叉搜索树、AVL树(平衡二叉搜索树)、B树、红黑树)

文章目录 1. 常用容器总结2. 关联式容器分类3. 二叉树、二叉搜索树、AVL树、B树、红黑树 1. 常用容器总结 针对常用容器的一些总结&#xff1a; 2. 关联式容器分类 关联式容器分为两大类&#xff1a; 基于红黑树的set和map&#xff1b;基于hash表的unorder_set和unorder_ma…...

xlrd.biffh.XLRDError: Excel xlsx file; not supported

文章目录 一、问题报错二、报错原因三、解决思路四、解决方法 一、问题报错 在处理Excel文件时&#xff0c;特别是当我们使用Python的xlrd库来读取.xlsx格式的文件&#xff0c;偶尔会遇到这样一个错误&#xff1a;“xlrd.biffh.XLRDError: Excel xlsx file; not supported”。…...

ENNSP中ACL的实验配置

ACL&#xff1a;访问控制列表 1访问控制----在路由器的入或者出的接口上&#xff0c;匹配流量&#xff0c;之后产生动作---允许或拒绝 2.定义感兴趣流量-----帮助其他软件抓流量 访问控制的匹配规则&#xff1a; 拓扑图如下 基础配置 基础配置弄好后&#xff0c;随便p…...

数字后端零基础入门系列 | Innovus零基础LAB学习Day8

###LAB15 Detail Routing for Signal Integrity, Timing, Power and Design for Yield 这个章节虽然标题有点长&#xff0c;但不要被它吓到&#xff0c;其实这个章节就是Innovus工具的绕线Routing。只不过这个阶段做Route不是仅仅是把所有的逻辑连接&#xff0c;用实际的金属层…...

【AI开源项目】FastGPT- 快速部署FastGPT以及使用知识库的两种方式!

文章目录 一、FastGPT大模型介绍1. 开发团队2. 发展史3. 基本概念 二、FastGPT与其他大模型的对比三、使用 Docker Compose 快速部署 FastGPT1、安装 Docker 和 Docker Compose&#xff08;1&#xff09;. 安装 Docker&#xff08;2&#xff09;. 安装 Docker Compose&#xff…...

以智能管理为基础,楼宇自控打造建筑碳中和新路径

在全球气候变化的严峻形势下&#xff0c;“碳中和”已成为各国发展的重要战略目标。建筑行业作为能源消耗与碳排放的“大户”&#xff0c;其运行阶段的能耗占全社会总能耗近40%&#xff0c;碳排放占比与之相当&#xff0c;实现建筑碳中和迫在眉睫。传统建筑管理模式下&#xff…...

MCU_IO驱动LED

注意事项&#xff1a; 1、亮度要求较高的情况下&#xff0c;不能由IO直接驱动LED MCU_IO引脚输出的电压和电流较弱&#xff0c;如果对光的亮度有要求的话&#xff0c;需要使用三极管来驱动。 MCU_IO的电压一般为3.3V或者5V&#xff0c;输出电流一般10mA-25mA。 2、不同颜色…...

集成学习三种框架

集成学习通过组合多个弱学习器构建强学习器&#xff0c;常见框架包括Bagging&#xff08;装袋&#xff09;、Boosting&#xff08;提升&#xff09; 和Stacking&#xff08;堆叠&#xff09; 一、Bagging&#xff08;自助装袋法&#xff09; 核心思想 从原始数据中通过有放回…...

飞牛使用Docker部署Tailscale 内网穿透教程

之前发过使用docker部署Tailscale的教程&#xff0c;不过是一年前的事情了&#xff0c;今天再重新发表一遍&#xff0c;这次使用compose部署更加方便&#xff0c;教程也会更加详细一点&#xff0c;希望对有需要的朋友有所帮助&#xff01; 对于大部分用户来说&#xff0c;白嫖 …...

【拓扑剪枝+深搜剪枝/计数】2024睿抗-章鱼图的判断

题目描述 对于无向图 G ( V , E ) G(V,E) G(V,E)&#xff0c;我们将有且只有一个环的、大于 2 2 2 个顶点的无向连通图称之为章鱼图&#xff0c;因为其形状像是一个环&#xff08;身体&#xff09;带着若干个树&#xff08;触手&#xff09;&#xff0c;故得名。 给定一个…...

【JavaEE】Spring Boot项目创建

Spring Boot介绍 在学习Spring Boot之前&#xff0c;我们先来认识一下Spring Spring官方是这样介绍的&#xff1a; 可以看到&#xff0c;Spring让Java程序更加快速&#xff0c;简单和安全。Spring对于速度&#xff0c;简单性和生产力的关注使其成为世界上最流行的Java框架 Sp…...

PostgreSQL17 编译安装+相关问题解决

更新时间&#xff1a;2025.6.6&#xff0c;当前最新稳定版本17.5&#xff0c;演示的是17.5&#xff0c;最新测试版本18beta1 演示系统&#xff1a;debian12 很多时候&#xff0c;只有编译安装才能用上最新的软件版本或指定的版本。这也是编译安装的意义。 一、编译安装 &…...

springMVC-10验证及国际化

验证 概述 ● 概述 1. 对输入的数据(比如表单数据)&#xff0c;进行必要的验证&#xff0c;并给出相应的提示信息。 2. 对于验证表单数据&#xff0c;springMVC提供了很多实用的注解, 这些注解由JSR303 验证框架提供. ●JSR 303 验证框架 1. JSR 303 的含义 JSR&#xff0…...

PC端直接打印功能(包括两张图片合并功能)

一、 效果图 二、demo代码 <template><div class"box"><divref"printContent"class"print-content"><div class"print-title">打印图片</div><imgclass"preview-image":src"merged…...

【C#】Quartz.NET怎么动态调用方法,并且根据指定时间周期执行,动态配置类何方法以及Cron表达式,有请DeepSeek

&#x1f339;欢迎来到《小5讲堂》&#x1f339; &#x1f339;这是《C#》系列文章&#xff0c;每篇文章将以博主理解的角度展开讲解。&#x1f339; &#x1f339;温馨提示&#xff1a;博主能力有限&#xff0c;理解水平有限&#xff0c;若有不对之处望指正&#xff01;&#…...