当前位置: 首页 > news >正文

Genmoai-smol:专为单 GPU 优化的开源 AI 视频生成模型,低显存生成高质量视频

❤️ 如果你也关注大模型与 AI 的发展现状,且对大模型应用开发非常感兴趣,我会快速跟你分享最新的感兴趣的 AI 应用和热点信息,也会不定期分享自己的想法和开源实例,欢迎关注我哦!

🥦 微信公众号|搜一搜:蚝油菜花 🥦


🚀 快速阅读

  1. Genmoai-smol 是一个优化过的视频生成模型,能在单个 GPU 上运行,并减少显存占用。
  2. 该模型支持通过 Gradio UI 或命令行界面生成视频,具有高保真度的运动和强大的提示遵循能力。
  3. 项目开源,提供了详细的安装和运行教程,适合在显存有限的设备上进行视频创作。

正文(附运行示例)

Genmoai-smol 是什么

在这里插入图片描述

Genmoai-smol 是 Genmoai 的 txt2video 模型 的一个优化分支,专为在单个 GPU 节点上运行而设计,减少了显存占用。它能够在只有 24GB 显存的 GPU 上生成高质量的视频内容,适合资源受限的环境使用。模型通过高保真度的运动和强大的提示遵循能力,缩小了开放和封闭视频生成系统之间的差距。

Genmoai-smol 的主要功能

  • 视频生成:将文本描述转换为视频内容。
  • 高保真度运动:生成自然流畅的视频内容。
  • 强大的提示遵循能力:理解并遵循用户的文本提示。
  • 优化显存占用:通过技术手段减少显存使用,适合单 GPU 设备。
  • 用户界面:提供 Gradio UI 和命令行界面两种操作方式。

Genmoai-smol 的技术原理

  • 深度学习模型:基于生成对抗网络(GANs)或变分自编码器(VAEs)等深度学习技术生成视频内容。
  • 文本到视频的转换:通过自然语言处理(NLP)技术理解文本提示,生成对应的视频内容。
  • 显存优化:通过将部分模型移回 CPU 和使用 bfloat16 数据类型等手段优化显存使用。
  • 多步骤推理:推理步骤不改变显存使用,但生成视频的时间随步骤增加而增加。
  • 系统资源管理:需要大量系统 RAM(约 64GB)来保证流畅的视频生成过程。

如何运行 Genmoai-smol

安装步骤

  1. 克隆项目仓库:
git clone https://github.com/victorchall/genmoai-smol
cd models
  1. 安装 uv 工具并创建虚拟环境:
pip install uv
uv venv .venv
source .venv/bin/activate
uv pip install -e .
  1. 下载模型权重(可以从 Hugging Face 下载或使用磁力链接)。

运行 Gradio UI

启动 Gradio UI:

python3 -m mochi_preview.gradio_ui --model_dir "<path_to_downloaded_directory>"

命令行生成视频

使用命令行直接生成视频:

python3 -m mochi_preview.infer --prompt "A hand with delicate fingers picks up a bright yellow lemon from a wooden bowl filled with lemons and sprigs of mint against a peach-colored background. The hand gently tosses the lemon up and catches it, showcasing its smooth texture. A beige string bag sits beside the bowl, adding a rustic touch to the scene. Additional lemons, one halved, are scattered around the base of the bowl. The even lighting enhances the vibrant colors and creates a fresh, inviting atmosphere." --seed 1710977262 --cfg-scale 4.5 --model_dir "<path_to_downloaded_directory>"

<path_to_downloaded_directory> 替换为您下载模型权重的目录路径。

资源

  • 关注并回复公众号【63】或【GenmoaiSmol】获取相关项目资源。

❤️ 如果你也关注大模型与 AI 的发展现状,且对大模型应用开发非常感兴趣,我会快速跟你分享最新的感兴趣的 AI 应用和热点信息,也会不定期分享自己的想法和开源实例,欢迎关注我哦!

🥦 微信公众号|搜一搜:蚝油菜花 🥦

相关文章:

Genmoai-smol:专为单 GPU 优化的开源 AI 视频生成模型,低显存生成高质量视频

❤️ 如果你也关注大模型与 AI 的发展现状&#xff0c;且对大模型应用开发非常感兴趣&#xff0c;我会快速跟你分享最新的感兴趣的 AI 应用和热点信息&#xff0c;也会不定期分享自己的想法和开源实例&#xff0c;欢迎关注我哦&#xff01; &#x1f966; 微信公众号&#xff…...

RHCE8

一、防火墙 防火墙&#xff1a;防火墙是位于内部网和外部网之间的屏障&#xff0c;它按照系统管理员预先定义好的规则来控制数据包的进出。防火墙又可以分为硬件防火墙与软件防火墙。 硬件防火墙是由厂商设计好的主机硬件&#xff0c;这台硬件防火墙的操作系统主要以提供数据…...

长短期记忆网络(LSTM)如何在连续的时间步骤中处理信息

长短期记忆网络&#xff08;LSTM&#xff09;如何在连续的时间步骤中处理信息 长短期记忆网络&#xff08;LSTM&#xff09;是一种高级的循环神经网络&#xff08;RNN&#xff09;&#xff0c;设计用来解决传统RNN在处理长时间序列数据时遇到的梯度消失或爆炸问题。LSTM通过其…...

MySQL基础(三)

一. 插入内容insert tips&#xff1a; &#xff08;一&#xff09;SQL中 表示 字符串&#xff0c;可以用 也可以用 " C/C、Java中&#xff0c; 表示字符&#xff0c;" 表示字符串SQL/Python/JS&#xff0c;没有字符类型&#xff0c;只有字符串&#xff0c; 和 &qu…...

浏览器八股

面试系列文章 万字总结我在寒冬里的面试准备经历前端铜九铁十面试必备八股文——【HTML&CSS】前端铜九铁十面试必备八股文——【JavaScript】前端铜九铁十面试必备八股文——【Vue】前端铜九铁十面试必备八股文——【浏览器】前端铜九铁十面试必备八股文——【网络相关】前…...

华为机试HJ18 识别有效的IP地址和掩码并进行分类统计

首先看一下题 描述 请解析IP地址和对应的掩码&#xff0c;进行分类识别。要求按照A/B/C/D/E类地址归类&#xff0c;不合法的地址和掩码单独归类。 所有的IP地址划分为 A,B,C,D,E五类 A类地址从1.0.0.0到126.255.255.255; B类地址从128.0.0.0到191.255.255.255; C类地址从192.0.…...

计算机网络——TCP拥塞控制原理

吞吐量 端口有16位...

ubuntu-开机黑屏问题快速解决方法

开机黑屏一般是由于显卡驱动出现问题导致。 快速解决方法&#xff1a; 通过ubuntu高级选项->recovery模式->resume->按esc即可进入recovery模式&#xff0c;进去后重装显卡驱动&#xff0c;重启即可解决。附加问题&#xff1a;ubuntu的默认显示管理器是gdm3,如果重…...

DNS服务器

正反解析 [rootlocalhost ~]# systemctl stop firewalld #关防火墙 [rootlocalhost ~]# setenforce 0 #关闭selinux [rootlocalhost ~]# mount /dev/sr0 /mnt #挂载 mount: /mnt: WARNING: source write-protected, mounted read-only. [rootlocalhost ~]# yum …...

【C++笔记】string类使用详解

前言 各位读者朋友们大家好&#xff01;上期我们讲完了C的模板初阶&#xff0c;这一期我们开启STL的学习。STL是C的数据结构和算法库&#xff0c;是我们学习C的很重要的一部分内容&#xff0c;在以后的工作中也很重要。现在我们开始讲解。 目录 前言一. 为什么学习string类1.…...

数字隔离器与光隔离器有何不同?---腾恩科技

在电子隔离中&#xff0c;两种常用的解决方案是数字隔离器和光学隔离器。两者都旨在电气隔离电路的各个部分&#xff0c;以保护敏感元件免受高压干扰&#xff0c;但它们通过不同的技术实现这一目标。本文探讨了这些隔离器之间的差异&#xff0c;重点介绍了它们的工作原理、优势…...

方差与协方差

方差是一种特殊的协方差。...

【含文档】基于Springboot+Vue的工商局商家管理系统 (含源码数据库+LW)

1.开发环境 开发系统:Windows10/11 架构模式:MVC/前后端分离 JDK版本: Java JDK1.8 开发工具:IDEA 数据库版本: mysql5.7或8.0 数据库可视化工具: navicat 服务器: SpringBoot自带 apache tomcat 主要技术: Java,Springboot,mybatis,mysql,vue 2.视频演示地址 3.功能 系统定…...

【股票市场情绪量化模型】

股票市场情绪量化模型&#xff1a;理论与实践 目录 什么是股票市场情绪情绪量化模型的基本概念情绪数据的来源与获取情绪量化模型的构建 4.1 情绪指标的选择4.2 模型设计与算法 情绪与市场表现的关系情绪量化模型的应用案例模型的局限性与挑战总结 1. 什么是股票市场情绪 股…...

Oracle视频基础1.3.8与1.4.1练习

1.3.8与1.4.1 -看数据文件的目录&#xff0c; dump 的目录&#xff0c;oracle的软件目录 -(secureCRT&#xff0c;telnet连接linux。)看当前用户&#xff0c;当前所属组&#xff0c;通过操作系统认证以sysdba登陆,启动数据库然后关闭 -看口令文件 看数据文件的目录&#xff0c…...

基于前馈神经网络模型和卷积神经网络的MINIST数据集训练

目录 前馈神经网络FNN模型 卷积神经网络CNN模型 前馈神经网络FNN模型 author: lxy function: model--mnist date : 2024/10/25 email : 13102790991163.com # 导入必要的库 import torch import torch.nn as nn import torchvision.datasets as dsets import torchvision.t…...

Vue3中Element Plus==el-eialog弹框中的input无法获取表单焦点

有弹框情况下 <template> <input ref"input" /> </template> <script setup> import { ref, onMounted } from vue // 声明一个 ref 来存放该元素的引用 // 必须和模板里的 ref 同名 const input ref(null) onMounted(() > { ne…...

16.网工入门篇--------介绍下网络服务及应用

一、网络服务的概念 网络服务是指通过网络提供的软件功能或设施&#xff0c;它允许不同的设备和用户在网络环境中进行信息交换、资源共享和协作。这些服务基于各种网络协议&#xff0c;以实现高效、可靠的通信。 二、常见网络服务类型 &#xff08;一&#xff09;文件传输服务 …...

区分 electron 全屏和最大化

一. 全屏 在 Electron 中&#xff0c;当窗口处于全屏状态时&#xff0c;通常不能直接使用 JavaScript 来改变窗口大小。这是出于安全和用户体验的考虑&#xff0c;以防止意外的窗口大小变化影响全屏体验。 1. 退出全屏后再调整大小 检测全屏状态&#xff0c;退出全屏并调整大…...

封装一个请求的hook(react函数组件)

对于后台系统&#xff0c;上面筛选&#xff0c;下面表格分页的页面&#xff0c;这个hook非常实用 omitBy方法&#xff1a;过滤不为undefined的对象属性 export const omitBy <T extends IObject, K extends keyof T>(object:T, predicate:(value:T[K]) > boolean):I…...

ssc377d修改flash分区大小

1、flash的分区默认分配16M、 / # df -h Filesystem Size Used Available Use% Mounted on /dev/root 1.9M 1.9M 0 100% / /dev/mtdblock4 3.0M...

基于uniapp+WebSocket实现聊天对话、消息监听、消息推送、聊天室等功能,多端兼容

基于 ​UniApp + WebSocket​实现多端兼容的实时通讯系统,涵盖WebSocket连接建立、消息收发机制、多端兼容性配置、消息实时监听等功能,适配​微信小程序、H5、Android、iOS等终端 目录 技术选型分析WebSocket协议优势UniApp跨平台特性WebSocket 基础实现连接管理消息收发连接…...

【SpringBoot】100、SpringBoot中使用自定义注解+AOP实现参数自动解密

在实际项目中,用户注册、登录、修改密码等操作,都涉及到参数传输安全问题。所以我们需要在前端对账户、密码等敏感信息加密传输,在后端接收到数据后能自动解密。 1、引入依赖 <dependency><groupId>org.springframework.boot</groupId><artifactId...

Python爬虫实战:研究feedparser库相关技术

1. 引言 1.1 研究背景与意义 在当今信息爆炸的时代,互联网上存在着海量的信息资源。RSS(Really Simple Syndication)作为一种标准化的信息聚合技术,被广泛用于网站内容的发布和订阅。通过 RSS,用户可以方便地获取网站更新的内容,而无需频繁访问各个网站。 然而,互联网…...

06 Deep learning神经网络编程基础 激活函数 --吴恩达

深度学习激活函数详解 一、核心作用 引入非线性:使神经网络可学习复杂模式控制输出范围:如Sigmoid将输出限制在(0,1)梯度传递:影响反向传播的稳定性二、常见类型及数学表达 Sigmoid σ ( x ) = 1 1 +...

OPenCV CUDA模块图像处理-----对图像执行 均值漂移滤波(Mean Shift Filtering)函数meanShiftFiltering()

操作系统&#xff1a;ubuntu22.04 OpenCV版本&#xff1a;OpenCV4.9 IDE:Visual Studio Code 编程语言&#xff1a;C11 算法描述 在 GPU 上对图像执行 均值漂移滤波&#xff08;Mean Shift Filtering&#xff09;&#xff0c;用于图像分割或平滑处理。 该函数将输入图像中的…...

html css js网页制作成品——HTML+CSS榴莲商城网页设计(4页)附源码

目录 一、&#x1f468;‍&#x1f393;网站题目 二、✍️网站描述 三、&#x1f4da;网站介绍 四、&#x1f310;网站效果 五、&#x1fa93; 代码实现 &#x1f9f1;HTML 六、&#x1f947; 如何让学习不再盲目 七、&#x1f381;更多干货 一、&#x1f468;‍&#x1f…...

Java求职者面试指南:Spring、Spring Boot、MyBatis框架与计算机基础问题解析

Java求职者面试指南&#xff1a;Spring、Spring Boot、MyBatis框架与计算机基础问题解析 一、第一轮提问&#xff08;基础概念问题&#xff09; 1. 请解释Spring框架的核心容器是什么&#xff1f;它在Spring中起到什么作用&#xff1f; Spring框架的核心容器是IoC容器&#…...

纯 Java 项目(非 SpringBoot)集成 Mybatis-Plus 和 Mybatis-Plus-Join

纯 Java 项目&#xff08;非 SpringBoot&#xff09;集成 Mybatis-Plus 和 Mybatis-Plus-Join 1、依赖1.1、依赖版本1.2、pom.xml 2、代码2.1、SqlSession 构造器2.2、MybatisPlus代码生成器2.3、获取 config.yml 配置2.3.1、config.yml2.3.2、项目配置类 2.4、ftl 模板2.4.1、…...

mac 安装homebrew (nvm 及git)

mac 安装nvm 及git 万恶之源 mac 安装这些东西离不开Xcode。及homebrew 一、先说安装git步骤 通用&#xff1a; 方法一&#xff1a;使用 Homebrew 安装 Git&#xff08;推荐&#xff09; 步骤如下&#xff1a;打开终端&#xff08;Terminal.app&#xff09; 1.安装 Homebrew…...