【flink】之kafka到kafka
一、概述
本文档旨在介绍如何使用Apache Flink从Kafka接收数据流,并将处理后的数据写入到另一个Kafka Topic中。Apache Flink是一个开源的流处理框架,能够处理无界和有界数据流,并且支持高吞吐量和低延迟的数据处理。通过Flink与Kafka的集成,可以构建实时数据管道,实现数据的实时采集、处理和转发。
二、环境准备
- Flink环境:确保已经安装并配置好Apache Flink。
- Kafka环境:确保Kafka已经安装并运行,且有两个可用的topic,一个用于接收数据(source topic),另一个用于写入数据(target topic)。
三、依赖配置
在Flink项目中,需要引入以下依赖:
- Flink的核心依赖
- Flink的Kafka连接器依赖
Maven依赖配置示例如下:
四、Flink作业实现
1.创建Flink执行环境:
StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();
env.setParallelism(1);
2.配置Kafka数据源:
Properties properties = new Properties();
properties.setProperty("bootstrap.servers", "your_kafka_broker:9092");
properties.setProperty("group.id", "flink_consumer_group"); FlinkKafkaConsumer<String> kafkaConsumer = new FlinkKafkaConsumer<>( "source_topic", // Kafka source topic new SimpleStringSchema(), // 数据反序列化方式 properties
); DataStream<String> kafkaStream = env.addSource(kafkaConsumer);
3.数据处理(可选):
DataStream<String> processedStream = kafkaStream.map(value -> value.toUpperCase());
4.配置Kafka数据目标:
FlinkKafkaProducer<String> kafkaProducer = new FlinkKafkaProducer<>( "target_topic", // Kafka target topic new SimpleStringSchema(), // 数据序列化方式 properties, FlinkKafkaProducer.Semantic.EXACTLY_ONCE_SEMANTICS // 确保数据精确一次处理(可选)
);
5.将数据写入Kafka:
processedStream.addSink(kafkaProducer);
6.启动Flink作业:
将上述代码整合到一个Java类中,并在main方法中启动Flink执行环境:
public class FlinkKafkaToKafka { public static void main(String[] args) throws Exception { // 创建Flink执行环境 StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment(); env.setParallelism(1); // 配置Kafka数据源 Properties properties = new Properties(); properties.setProperty("bootstrap.servers", "your_kafka_broker:9092"); properties.setProperty("group.id", "flink_consumer_group"); FlinkKafkaConsumer<String> kafkaConsumer = new FlinkKafkaConsumer<>( "source_topic", new SimpleStringSchema(), properties ); DataStream<String> kafkaStream = env.addSource(kafkaConsumer); // 数据处理(可选) DataStream<String> processedStream = kafkaStream.map(value -> value.toUpperCase()); // 配置Kafka数据目标 FlinkKafkaProducer<String> kafkaProducer = new FlinkKafkaProducer<>( "target_topic", new SimpleStringSchema(), properties, FlinkKafkaProducer.Semantic.EXACTLY_ONCE_SEMANTICS ); // 将数据写入Kafka processedStream.addSink(kafkaProducer); // 启动Flink作业 env.execute("Flink Kafka to Kafka Job"); }
}
五、运行与验证
- 编译并打包:将上述代码编译并打包成JAR文件。
- 提交Flink作业:使用Flink命令行工具将JAR文件提交到Flink集群。
- 验证数据:在Kafka的target topic中验证是否接收到了处理后的数据。
六、总结
本文档详细介绍了如何使用Apache Flink从Kafka接收数据流,并将处理后的数据写入到另一个Kafka Topic中。通过配置依赖、创建Flink执行环境、配置Kafka数据源和目标、编写数据处理逻辑以及启动Flink作业等步骤,成功实现了数据的实时采集、处理和转发。在实际应用中,可以根据具体需求对代码进行调整和优化。
相关文章:
【flink】之kafka到kafka
一、概述 本文档旨在介绍如何使用Apache Flink从Kafka接收数据流,并将处理后的数据写入到另一个Kafka Topic中。Apache Flink是一个开源的流处理框架,能够处理无界和有界数据流,并且支持高吞吐量和低延迟的数据处理。通过Flink与Kafka的集成…...
微信小程序时间弹窗——年月日时分
需求 1、默认当前时间2、选择时间弹窗限制最大值、最小值3、每次弹起更新最大值为当前时间,默认值为上次选中时间4、 minDate: new Date(2023, 10, 1).getTime(),也可以传入时间字符串new Date(2023-10-1 12:22).getTime() html <view class"flex bb ptb…...
杂货 | 每日资讯 | 2024.11.1
注意:以下内容皆为AI总结 2024年11月1日,人工智能(AI)领域发生了多项重要事件,标志着技术发展的新阶段。本文将详细探讨以下三大事件: OpenAI为ChatGPT新增搜索功能IEEE发布《2025年及以后的技术影响》报…...
Genmoai-smol:专为单 GPU 优化的开源 AI 视频生成模型,低显存生成高质量视频
❤️ 如果你也关注大模型与 AI 的发展现状,且对大模型应用开发非常感兴趣,我会快速跟你分享最新的感兴趣的 AI 应用和热点信息,也会不定期分享自己的想法和开源实例,欢迎关注我哦! 🥦 微信公众号ÿ…...
RHCE8
一、防火墙 防火墙:防火墙是位于内部网和外部网之间的屏障,它按照系统管理员预先定义好的规则来控制数据包的进出。防火墙又可以分为硬件防火墙与软件防火墙。 硬件防火墙是由厂商设计好的主机硬件,这台硬件防火墙的操作系统主要以提供数据…...
长短期记忆网络(LSTM)如何在连续的时间步骤中处理信息
长短期记忆网络(LSTM)如何在连续的时间步骤中处理信息 长短期记忆网络(LSTM)是一种高级的循环神经网络(RNN),设计用来解决传统RNN在处理长时间序列数据时遇到的梯度消失或爆炸问题。LSTM通过其…...
MySQL基础(三)
一. 插入内容insert tips: (一)SQL中 表示 字符串,可以用 也可以用 " C/C、Java中, 表示字符," 表示字符串SQL/Python/JS,没有字符类型,只有字符串, 和 &qu…...
浏览器八股
面试系列文章 万字总结我在寒冬里的面试准备经历前端铜九铁十面试必备八股文——【HTML&CSS】前端铜九铁十面试必备八股文——【JavaScript】前端铜九铁十面试必备八股文——【Vue】前端铜九铁十面试必备八股文——【浏览器】前端铜九铁十面试必备八股文——【网络相关】前…...
华为机试HJ18 识别有效的IP地址和掩码并进行分类统计
首先看一下题 描述 请解析IP地址和对应的掩码,进行分类识别。要求按照A/B/C/D/E类地址归类,不合法的地址和掩码单独归类。 所有的IP地址划分为 A,B,C,D,E五类 A类地址从1.0.0.0到126.255.255.255; B类地址从128.0.0.0到191.255.255.255; C类地址从192.0.…...
计算机网络——TCP拥塞控制原理
吞吐量 端口有16位...
ubuntu-开机黑屏问题快速解决方法
开机黑屏一般是由于显卡驱动出现问题导致。 快速解决方法: 通过ubuntu高级选项->recovery模式->resume->按esc即可进入recovery模式,进去后重装显卡驱动,重启即可解决。附加问题:ubuntu的默认显示管理器是gdm3,如果重…...
DNS服务器
正反解析 [rootlocalhost ~]# systemctl stop firewalld #关防火墙 [rootlocalhost ~]# setenforce 0 #关闭selinux [rootlocalhost ~]# mount /dev/sr0 /mnt #挂载 mount: /mnt: WARNING: source write-protected, mounted read-only. [rootlocalhost ~]# yum …...
【C++笔记】string类使用详解
前言 各位读者朋友们大家好!上期我们讲完了C的模板初阶,这一期我们开启STL的学习。STL是C的数据结构和算法库,是我们学习C的很重要的一部分内容,在以后的工作中也很重要。现在我们开始讲解。 目录 前言一. 为什么学习string类1.…...
数字隔离器与光隔离器有何不同?---腾恩科技
在电子隔离中,两种常用的解决方案是数字隔离器和光学隔离器。两者都旨在电气隔离电路的各个部分,以保护敏感元件免受高压干扰,但它们通过不同的技术实现这一目标。本文探讨了这些隔离器之间的差异,重点介绍了它们的工作原理、优势…...
方差与协方差
方差是一种特殊的协方差。...
【含文档】基于Springboot+Vue的工商局商家管理系统 (含源码数据库+LW)
1.开发环境 开发系统:Windows10/11 架构模式:MVC/前后端分离 JDK版本: Java JDK1.8 开发工具:IDEA 数据库版本: mysql5.7或8.0 数据库可视化工具: navicat 服务器: SpringBoot自带 apache tomcat 主要技术: Java,Springboot,mybatis,mysql,vue 2.视频演示地址 3.功能 系统定…...
【股票市场情绪量化模型】
股票市场情绪量化模型:理论与实践 目录 什么是股票市场情绪情绪量化模型的基本概念情绪数据的来源与获取情绪量化模型的构建 4.1 情绪指标的选择4.2 模型设计与算法 情绪与市场表现的关系情绪量化模型的应用案例模型的局限性与挑战总结 1. 什么是股票市场情绪 股…...
Oracle视频基础1.3.8与1.4.1练习
1.3.8与1.4.1 -看数据文件的目录, dump 的目录,oracle的软件目录 -(secureCRT,telnet连接linux。)看当前用户,当前所属组,通过操作系统认证以sysdba登陆,启动数据库然后关闭 -看口令文件 看数据文件的目录,…...
基于前馈神经网络模型和卷积神经网络的MINIST数据集训练
目录 前馈神经网络FNN模型 卷积神经网络CNN模型 前馈神经网络FNN模型 author: lxy function: model--mnist date : 2024/10/25 email : 13102790991163.com # 导入必要的库 import torch import torch.nn as nn import torchvision.datasets as dsets import torchvision.t…...
Vue3中Element Plus==el-eialog弹框中的input无法获取表单焦点
有弹框情况下 <template> <input ref"input" /> </template> <script setup> import { ref, onMounted } from vue // 声明一个 ref 来存放该元素的引用 // 必须和模板里的 ref 同名 const input ref(null) onMounted(() > { ne…...
在软件开发中正确使用MySQL日期时间类型的深度解析
在日常软件开发场景中,时间信息的存储是底层且核心的需求。从金融交易的精确记账时间、用户操作的行为日志,到供应链系统的物流节点时间戳,时间数据的准确性直接决定业务逻辑的可靠性。MySQL作为主流关系型数据库,其日期时间类型的…...
调用支付宝接口响应40004 SYSTEM_ERROR问题排查
在对接支付宝API的时候,遇到了一些问题,记录一下排查过程。 Body:{"datadigital_fincloud_generalsaas_face_certify_initialize_response":{"msg":"Business Failed","code":"40004","sub_msg…...
23-Oracle 23 ai 区块链表(Blockchain Table)
小伙伴有没有在金融强合规的领域中遇见,必须要保持数据不可变,管理员都无法修改和留痕的要求。比如医疗的电子病历中,影像检查检验结果不可篡改行的,药品追溯过程中数据只可插入无法删除的特性需求;登录日志、修改日志…...
MODBUS TCP转CANopen 技术赋能高效协同作业
在现代工业自动化领域,MODBUS TCP和CANopen两种通讯协议因其稳定性和高效性被广泛应用于各种设备和系统中。而随着科技的不断进步,这两种通讯协议也正在被逐步融合,形成了一种新型的通讯方式——开疆智能MODBUS TCP转CANopen网关KJ-TCPC-CANP…...
SpringBoot+uniapp 的 Champion 俱乐部微信小程序设计与实现,论文初版实现
摘要 本论文旨在设计并实现基于 SpringBoot 和 uniapp 的 Champion 俱乐部微信小程序,以满足俱乐部线上活动推广、会员管理、社交互动等需求。通过 SpringBoot 搭建后端服务,提供稳定高效的数据处理与业务逻辑支持;利用 uniapp 实现跨平台前…...
土地利用/土地覆盖遥感解译与基于CLUE模型未来变化情景预测;从基础到高级,涵盖ArcGIS数据处理、ENVI遥感解译与CLUE模型情景模拟等
🔍 土地利用/土地覆盖数据是生态、环境和气象等诸多领域模型的关键输入参数。通过遥感影像解译技术,可以精准获取历史或当前任何一个区域的土地利用/土地覆盖情况。这些数据不仅能够用于评估区域生态环境的变化趋势,还能有效评价重大生态工程…...
MySQL中【正则表达式】用法
MySQL 中正则表达式通过 REGEXP 或 RLIKE 操作符实现(两者等价),用于在 WHERE 子句中进行复杂的字符串模式匹配。以下是核心用法和示例: 一、基础语法 SELECT column_name FROM table_name WHERE column_name REGEXP pattern; …...
【论文阅读28】-CNN-BiLSTM-Attention-(2024)
本文把滑坡位移序列拆开、筛优质因子,再用 CNN-BiLSTM-Attention 来动态预测每个子序列,最后重构出总位移,预测效果超越传统模型。 文章目录 1 引言2 方法2.1 位移时间序列加性模型2.2 变分模态分解 (VMD) 具体步骤2.3.1 样本熵(S…...
聊一聊接口测试的意义有哪些?
目录 一、隔离性 & 早期测试 二、保障系统集成质量 三、验证业务逻辑的核心层 四、提升测试效率与覆盖度 五、系统稳定性的守护者 六、驱动团队协作与契约管理 七、性能与扩展性的前置评估 八、持续交付的核心支撑 接口测试的意义可以从四个维度展开,首…...
ArcGIS Pro制作水平横向图例+多级标注
今天介绍下载ArcGIS Pro中如何设置水平横向图例。 之前我们介绍了ArcGIS的横向图例制作:ArcGIS横向、多列图例、顺序重排、符号居中、批量更改图例符号等等(ArcGIS出图图例8大技巧),那这次我们看看ArcGIS Pro如何更加快捷的操作。…...
