untiy mlagents 飞机大战 ai训练
前言
之前那个python源码的飞机大战bug过多,还卡顿,难以继续训练。可直接放弃的话又不甘心,所以找了个unity版本的飞机大战继续(终于不卡了),这次直接使用现成的mlagents库。
过程
前前后后花了两周时间,甚至因此拖了好几个课的实验报告没写(大三好多报告啊!!!选修课都要写),然而训练出来的模型,甚至都没有python版本的好…
问题
第一次用untiy 代码与界面对应不及时 在代码里初始化了 却因为在界面改了而失效 有时就因为这个找了好久bug 后面发现在start函数里初始化靠谱点
mlagents 教程较少 只找到了关于官方教程项目的博客
需要考虑的因素过多 飞机 子弹 buff的个数加起来最多可达30(没有进行限制) 一开始直接使用camera sensor 这个组件将图像传进去 那时还想着同样都是输入图像,mlagents库可以同时训练多个并加速,效果肯定比python版本的好的多,结果证明想多了。
目前
状态空间
图像 灰度
敌人 子弹 buff 距离飞机最近的部分
血量 buff数。。。
原本还想加上消灭所有敌人可获得的分数的,但感觉与已有的重叠了
(已去除) 检测敌机和子弹的射线组件 不知道如何查看是否检测到了 只能删掉
动作空间
移动 上下左右 离散 (旧版本 连续 可变速 可转向)
使用buff
奖励
无事发生 0 试过惩罚,因为官方项目里为了快速完成任务会这样做。但是飞机大战里为了躲避子弹,无事发生是免不了的,盲目逼迫可能会起到负面效果,让ai无法理解。
击杀 根据增加分数奖励
获得buff 奖励
受伤 扣分
死亡 扣分
(想过) 敌人越过防线 惩罚 避免ai贪生怕死 尽可能的优雅而又高效率杀敌
(已注释掉)高度惩罚 静止惩罚
训练
1.先模拟学习 游戏苦手 为了演示的好一点 特意把游戏难度降低了 因为将全部敌人的数据输入给网络并不显示(输入的图像感觉毛用没有!!!),所以ai只能“看”到最近的x个对象。为了真实,我改成了真人玩时也只能看到ai能“看”的。例如3颗子弹(突然冒出的子弹有点吓人,因此暴毙过),9个敌机。
2.不进行模拟学习
效果都不理想。不明白为啥python那里只有图像就表现得那么好(相对而言)。
辅助
第一周时每次开机都要进行打开项目文件夹
conda命令行
转换环境
打开记录命令的文本文件
复制粘贴
这个繁琐的步骤
第二周实在忍不了了,写了个bat脚本来提高启动效率
放弃
两周了效果还是不好,为了考试和等着我的一堆实验报告,只能放弃了。代码太乱了就不放出来了,已经成shishan了,一堆不敢删掉只能注释的代码(尝试修改奖励函数的产物)。改着改着硬是堆到了1000多行代码。这炼丹师实在不好当啊。
参考
(参数调整)[https://www.cnblogs.com/gentlesunshine/p/12790103.html]
(unity飞机大战github)[https://github.com/Like-Hero/Air-War]
相关文章:

untiy mlagents 飞机大战 ai训练
前言 之前那个python源码的飞机大战bug过多,还卡顿,难以继续训练。可直接放弃的话又不甘心,所以找了个unity版本的飞机大战继续(终于不卡了),这次直接使用现成的mlagents库。 过程 前前后后花了两周时间,甚至因此拖…...

从0开始学统计-什么是中心极限定理
引言 中心极限定理(Central Limit Theorem, CLT)是统计学中的一块基石,它揭示了一个难以置信的数学现象:无论一个随机变量的原始分布如何,只要我们取足够大的样本量,这些样本的平均值(或总和&a…...

工具方法 - 个人活动的分类
人类活动的分类是一个复杂的话题,因为人类的活动范围非常广泛且相互交叉。然而,我们可以尝试将人类的活动大致分为以下几个主要类别: 工作活动 工作活动是人类生活中不可或缺的一部分,通常包括以下方面: 1. 职业工作&a…...

11.1组会汇报-基于区块链的安全多方计算研究现状与展望
基础知识 *1.背书,这个词源来自银行票据业务,是指票据转让时,原持有人在票据背面加盖自己的印鉴,证明该票据真实有效、如果有问题就可以找原持有人。 区块链中的背书就好理解了。可以简单的理解为验证交易并声明此交易合法&…...

ubuntu【桌面】 配置NAT模式固定IP
DHCP分配导致虚拟机IP老变,SSH老要重新配置,设成静态方便些 一、设NAT模式 1、设为NAT模式 2、看模式对应的虚拟网卡 - VMnet8 3、共享主机网卡网络到虚拟网卡 - VMnet8 二、为虚拟网卡设置静态IP 记住这个IP 三、设置ubuntu固定IP 1、关闭DHCP并…...

评估 机器学习 回归模型 的性能和准确度
回归 是一种常用的预测模型,用于预测一个连续因变量和一个或多个自变量之间的关系。 那么,最后评估 回归模型 的性能和准确度非常重要,可以帮助我们判断模型是否有效并进行改进。 接下来,和大家分享如何评估 回归模型 的性能和准…...

如何下载安装TestLink?
一、下载TestLink、XAMPP TestLink 下载 |SourceForge.net 备用:GitHub - TestLinkOpenSourceTRMS/testlink-code: TestLink开源测试和需求管理系统 下载XAMPP: Download XAMPP 注意:TestLink与PHP版本有关系,所以XA…...

基于SSM+微信小程序的订餐管理系统(点餐2)
👉文末查看项目功能视频演示获取源码sql脚本视频导入教程视频 1、项目介绍 基于SSM微信小程序的订餐管理系统实现了管理员和用户。管理端实现了 首页、个人中心、用户管理、菜品分类管理、菜品信息管理、订单信息管理、配送信息管理、菜品评价管理、订单投诉管理、…...

【C++排序 双指针】1996. 游戏中弱角色的数量|1996
本文涉及的基础知识点 排序 C算法:滑动窗口及双指针总结 本题其它解法 【C单调栈 排序】1996. 游戏中弱角色的数量|1996 LeetCode1996. 游戏中弱角色的数量 你正在参加一个多角色游戏,每个角色都有两个主要属性:攻击 和 防御 。给你一个…...

GESP4级考试语法知识(捕捉异常)
参考程序代码: #include <iostream> using namespace std;double divide(double a, double b) {if (b 0) {throw "Division by zero error"; // 抛出异常}return a / b; }int main() {double num1, num2;cout << "Enter two numbers:…...

HTML 基础标签——元数据标签 <meta>
文章目录 1. `<meta>` 标签概述2. 属性详解2.1 `charset` 属性2.2 `name` 属性2.3 `content` 属性2.4 `http-equiv` 属性3. 其他常见属性小结在 HTML 文档中,元数据标签 <meta> 是一种重要的标签,用于提供关于文档的信息,这些信息不直接显示在网页内容中,但对于…...

栈虚拟机和寄存器虚拟机,有什么不同?
本来这节内容是打算直接讲字节码指令的,但讲之前又必须得先讲指令集架构,而指令集架构又分为两种,一种是基于栈的,一种是基于寄存器的。 那不妨我们这节就单独来讲讲栈虚拟机和寄存器虚拟机,它们有什么不同࿰…...

Windows下基于fping进行批量IP测试
fping是Linux下一个很好用的IP测试工具,结合代码可以完成批量的IP测试,在网络调试中用途很广。本文是基于fping for Windows结合bat批处理,定制的测试脚本样例。 一、程序信息 本次测试使用fpingV5.1 for Windows版,版本信息如下…...

一款实用的Word文档图片转换与水印保护工具
目录 前言软件功能简介软件实现方法及关键代码 1. Word 文档转图片的实现2. 图片水印添加功能3. 生成数字指纹(哈希值)4. 保存图片信息到 JSON 文件 软件的实际使用场景软件操作指南 1. 下载和安装2. 操作流程 总结 1,前言 在日常办公和内…...

优化用于传感应用的衬底集成波导技术
ANSYS HFSS 是一款功能强大的电磁仿真软件,支持为微流体生物传感器应用设计和分析衬底集成波导 (SIW) 技术。它为快速设计优化、材料选择、系统集成和虚拟原型制作提供了一个强大的平台。借助 ANSYS HFSS,研究人员和工程师可以高效…...

Java多态特性的向上转型
Java的多态特性通过向上转型来实现。向上转型指的是将子类对象赋值给父类引用变量的操作。这样做的好处是可以使用父类引用变量来调用子类对象的方法。 例如,有一个父类Animal和一个子类Dog,可以这样进行向上转型: Animal animal new Dog(…...

C++ 判断语句的深入解析
C 判断语句的深入解析 C 是一种广泛使用的编程语言,以其高效性和灵活性著称。在 C 中,判断语句是控制程序流程的关键组成部分,它们允许程序根据不同的条件执行不同的代码路径。本文将深入探讨 C 中的判断语句,包括 if、else if、…...

15分钟学 Go 第 33 天:项目结构
第33天:项目结构 目标:了解Go项目的典型结构 在Go语言的开发中,项目结构的合理性直接影响着代码的可维护性、可扩展性和团队协作效率。本篇文章将深入探讨Go语言的典型项目结构,并提供实际示例代码和相关的流程图。 一、Go项目…...

conda迁移虚拟环境路径
方法一:使用软连接 ln -s ~/Anaconda3/envs /new/path/envs 方法二:修改~/.condarc文件 1.打开~/.condarc文件 #添加下面参数 envs_dirs: - /newpath/anaconda3/envs pkgs_dirs: - /newpath/anaconda3/pkgs 2. source ~/.bashrc 3.查看是否成功con…...

(八)JavaWeb后端开发——Tomcat
目录 1.Web服务器概念 2.tomcat 1.Web服务器概念 服务器:安装了服务器软件的计算机服务器软件:接收用户的请求,处理请求,做出响应web服务器软件:在web服务器软件中,可以部署web项目,让用户通…...

yocto中通常不直接修改提供的recipes的bb文件
不直接在 Yocto 官方提供的 recipe 中修改 通常是创建新的 metadata 和 recipe 来配置相关软件编译等过程 主要有以下几个原因: 1. 便于维护和升级 隔离自定义修改:Yocto 官方的 recipe 可能会随着版本更新而变化。如果直接修改官方 recipe࿰…...

智能座舱相关术语全解及多模态交互在智能座舱中的应用
文章目录 座舱相关术语全解1. 智能座舱2. UFS3. 多模态交互4. 3D虚拟引擎5. AR/VR6. GNSS7. TTS8. DPU9. 摄像头10. 屏幕/显示器11. 音频12. 无线连接13. 其他组件 多模态交互在智能座舱中有以下一些应用 座舱相关术语全解 1. 智能座舱 智能座舱(intelligent cabi…...

【Fastjson反序列化漏洞:深入了解与防范】
一、Fastjson反序列化漏洞概述 Fastjson是一款高性能的Java语言JSON处理库,广泛应用于Web开发、数据交换等领域。然而,由于fastjson在解析JSON数据时存在安全漏洞,攻击者可以利用该漏洞执行任意代码,导致严重的安全威胁。 二、F…...

【OJ题解】C++实现反转字符串中的每个单词
💵个人主页: 起名字真南 💵个人专栏:【数据结构初阶】 【C语言】 【C】 【OJ题解】 题目要求:给定一个字符串 s ,你需要反转字符串中每个单词的字符顺序,同时仍保留空格和单词的初始顺序。 题目链接: 反转字符串中的所…...

万字长文详解Hive聚合函数 grouping sets、cube、rollup原理、语法、案例和优化
目录 原理与语法 使用场景 多维度报表生成 复杂的数据分析 实际案例 原理与语法 与GROUPINGSETS的区别 实际案例 原理与语法 与CUBE的对比 实际案例 执行效率比较 优化建议 Hive提供了三个强大的高级聚合函数: GROUPING SETS 、 CUBE 和 ROLLUP ,用于处理复杂的…...
数列分块入门
本期是数列分块入门。其中的大部分题目来自hzwer在LOJ上提供的数列分块入门系列。 Blog:here (其实是对之前分块的 blog 的整理补充) sto hzwer orz %%% [转载] ---------------------------------------------------------------------------------…...

SPRD Android 14 Launcher 3 中添加长按桌面图标启动自由窗口模式功能
本文将介绍如何在SPRD Android 14 Launcher 3 中实现一个功能,使用户可以通过长按应用图标来启动自由窗口模式。这一功能的实现将提升多任务处理能力和应用使用体验。 修改的文件列表 以下是主要涉及的文件及其修改内容: QuickstepLauncher.java:添加自由窗口快捷方式的支…...

WebSocket详解:从前端到后端的全栈理解
文章目录 前言一、WebSocket简介1.1 WebSocket的特点 二、WebSocket的工作原理2.1 握手过程2.2 数据传输 三、WebSocket在前端的应用四、WebSocket在后端的应用五、WebSocket的局限与解决方案结语 前言 随着互联网技术的发展,传统的HTTP协议在某些场景下的局限性逐…...

SOLIDWORKS 2025加快装配体设计 确保可制造性
在快速变化的制造业环境中,SOLIDWORKS作为一款CAD软件,始终致力于提供有效、智能且可靠的解决方案,以满足设计师和工程师对装配体设计的多样化需求。随着SOLIDWORKS 2025版本的发布,其在加快装配体设计、确保可制造性方面取得了显…...

简单题:计算从位置 x 到 y 的最少步数| 豆包MarsCode AI刷题
题目解析:计算从位置 x 到 y 的最少步数 题目描述 题目要求从整数位置 x 移动到整数位置 y,每一步可以将当前位置增加或减少,且每步的增加或减少的值必须是连续的整数。首末两步的步长必须是 1。要求求出从 x 到 y 的最少步数。 思路分析 …...