当前位置: 首页 > news >正文

02LangChain 实战课——安装入门

LangChain安装入门

一、大语言模型简介

大语言模型是利用深度学习技术,尤其是神经网络,来理解和生成人类语言的人工智能模型。这些模型因其庞大的参数数量而得名,能够理解和生成复杂的语言模式。它们通过预测下一个词来训练,基于大量数据学习语言的用法和含义,以及如何组合形成意义。尽管大语言模型能够生成连贯的文本,但它们并不真正理解语言,只是基于概率模型进行预测。

二、LangChain工具介绍

LangChain是一个基于大语言模型的应用开发工具,以其灵活性和模块化特性著称,使得处理语言模型变得简单。它允许开发者无论在何时何地都能流畅地调用语言模型,并基于模型的预测能力开发新应用。LangChain支持Python和JavaScript两个版本,本教程将使用Python版本。

三、安装LangChain

安装LangChain的基本命令是pip install langchain。但为了与各种模型和数据存储库集成,可能还需要安装其他依赖项,如openaichroma等。可以通过pip install langchain[llms]命令安装LangChain及其常用的开源LLM库。安装后,使用pip install --upgrade langchain更新到最新版本。

四、OpenAI API

OpenAI提供了强大的大语言模型,如ChatGPT和GPT-4。要使用OpenAI API,需要注册并获取API Key。OpenAI的模型分为Chat Model和Text Model两大类,分别适用于对话和文本生成任务。了解OpenAI API的基本设计思路对于理解LangChain的底层逻辑至关重要。

五、调用OpenAI的Text和Chat模型

调用Text模型和Chat模型的基本流程相似,但输入和输出的数据格式有所不同。Text模型接收输入并返回文本,而Chat模型则处理消息列表,并在消息中区分角色(system、user、assistant)。这些角色有助于模型理解对话背景和上下文,生成更合适的回复。

六、通过LangChain调用模型

LangChain提供了对OpenAI Text和Chat模型的封装,使得调用过程更加简洁。通过创建LLM对象和Chat模型对象,并指定模型和参数,可以轻松地进行文本生成。LangChain对输出结果进行了解析,只保留了最重要的文字部分,简化了结果的处理。

七、总结

本课程介绍了大语言模型的基本概念、LangChain工具的使用、OpenAI API的调用方法,以及如何通过LangChain调用Text和Chat模型。理解这些内容对于后续的学习至关重要。

八、思考题

  1. LangChain的核心价值何在?尽管使用LangChain并不比直接调用OpenAI API省事,但LangChain提供了哪些额外的优势?

回答方向:
LangChain的核心价值在于其提供的抽象层和工具集,这些工具使得开发者可以更容易、更高效地集成和操作大型语言模型。具体来说:

  • 简化集成: LangChain提供了一个统一的接口来访问不同的语言模型,包括OpenAI和其他开源模型,这减少了开发者在不同API之间切换时需要做的工作。
  • 模块化和可扩展性: LangChain的模块化设计允许开发者根据需要选择和组合不同的组件,构建定制化的解决方案。
  • 预构建链: LangChain提供了预构建的链(Chains),这些链是为特定任务设计的,可以快速部署,无需从头开始构建复杂的工作流。
  • 社区和文档支持: LangChain有一个活跃的社区和不断更新的文档,这为开发者提供了学习和解决问题的资源。
  • 安全性和合规性: LangChain可以帮助开发者确保他们的应用遵守数据安全和隐私法规,因为它提供了对数据处理流程的控制。
  1. LangChain支持的模型不仅限于OpenAI,如何尝试使用HuggingFace开源社区中的其他模型?

回答方向:
是的,可以尝试使用HuggingFace开源社区中的模型。以下是一般步骤:

  • 选择模型: 在HuggingFace的模型库中选择一个适合任务的模型。
  • 安装依赖: 根据模型的要求安装必要的依赖项,可能包括特定的库和环境。
  • 配置LangChain: 根据HuggingFace模型的API文档,配置LangChain以正确地调用模型。
  • 测试和调整: 进行初步测试,并根据需要调整参数以优化性能。

示例代码:

from langchain import HuggingFaceHub
llm = HuggingFaceHub(model_id="bigscience/bloom-1b7")
response = llm.predict("请给我的花店起个名")
print(response)

这段代码展示了如何使用LangChain调用HuggingFace上的一个模型。

  1. 大语言模型除了文本生成式模型,还有哪些类别?Bert模型是否属于文本生成式模型?

回答方向:
大语言模型不仅限于文本生成模型,它们还包括:

  • 理解模型: 这些模型专注于理解文本的含义,如BERT(Bidirectional Encoder Representations from Transformers),它主要用于语言理解任务,如文本分类、问答和命名实体识别。
  • 嵌入模型: 这些模型将文本转换为数值向量,用于文本相似性比较、聚类等任务。
  • 翻译模型: 专注于将一种语言的文本翻译成另一种语言。
  • 摘要模型: 自动生成文本的摘要。

BERT模型:
BERT不是一个文本生成模型,它是一个预训练的语言表示模型,主要用于理解任务。BERT通过大量文本数据训练,学习到深层次的文本表示,可以用于各种下游NLP任务。

九、延伸阅读

  • LangChain官方文档(Python版和JavaScript版)
  • OpenAI API官方文档
  • HuggingFace官方网站

通过这些资源,可以更深入地了解LangChain和大语言模型的相关知识。

相关文章:

02LangChain 实战课——安装入门

LangChain安装入门 一、大语言模型简介 大语言模型是利用深度学习技术,尤其是神经网络,来理解和生成人类语言的人工智能模型。这些模型因其庞大的参数数量而得名,能够理解和生成复杂的语言模式。它们通过预测下一个词来训练,基于…...

Python函数中关键字参数、位置参数、默认参数有何不同

在Python中,函数的参数分为三种类型:关键字参数(key arguments)、位置参数(positional arguments)和默认参数(default arguments)。它们的主要区别在于调用时如何传递值,…...

PNG 格式和 JPG 格式都什么时候用

通常我们都知道,如果是针对网络传输或者网站的格式,我们多会使用 PNG 格式。 如果是照片,大部分都是 JPG 格式的。 那么我们网站常用的截图应该保存为什么格式呢? 照片截图 照片截图应该保存为 JPG 格式。 虽然现在我们多存储…...

Qt 练习做一个登录界面

练习做一个登录界面 效果 UI图 UI代码 <?xml version"1.0" encoding"UTF-8"?> <ui version"4.0"><class>Dialog</class><widget class"QDialog" name"Dialog"><property name"ge…...

计算机视觉实验一:图像基础处理

1. 图像的直方图均衡 1.1 实验目的与要求 (1)理解直方图均衡的原理与作用; (2)掌握统计图像直方图的方法; (3)掌握图像直方图均衡的方法。 1.2 实验原理及知识点 直方图均衡化是通过灰度变换将一幅图象转换为另一幅均衡直方图&#xff0c;即在每个灰度级上都具有相同的象素…...

【WebApi】C# webapi 后端接收部分属性

在C#的Web API后端接收部分属性,可以使用[FromBody]特性配合JsonPatchDocument或者Delta来实现。这里提供一个使用JsonPatchDocument的示例。 首先,定义一个模型类:public class User public class User {public int Id {get; set; }...

Java 使用 Redis

Java 使用 Redis 1. 引言 Redis是一个开源的、基于内存的数据结构存储系统,可以用作数据库、缓存和消息中间件。它支持多种类型的数据结构,如字符串、哈希、列表、集合、有序集合等。由于Redis基于内存,其读写速度非常快,因此被广泛应用于需要高速缓存和实时通讯的场景。…...

【ONE·Linux || 高级IO(二)】

总言 主要内容&#xff1a;多路转接&#xff1a;epoll学习。       文章目录 总言5、多路转接&#xff1a;epoll5.1、相关概念与接口5.1.1、基本函数认识5.1.1.1、epoll_create5.1.1.2、epoll_ctl5.1.1.3、epoll_wait 5.1.2、epoll的工作原理5.1.2.1、准备工作&#xff08;…...

将 IBM WatsonX 数据与 Milvus 结合使用,构建用于知识检索的智能 Slack 机器人

在当今快节奏的工作环境中&#xff0c;快速轻松地访问信息对于保持生产力和效率至关重要。无论是在 Runbook 中查找特定说明&#xff0c;还是访问关键知识转移 &#xff08;KT&#xff09; 文档&#xff0c;快速检索相关信息的能力都可以产生重大影响。 本教程将指导您构建一个…...

2024 网鼎杯 CTF --- Crypto wp

文章目录 青龙组Crypto1Crypto2 白虎组Crypto1Crypto2 朱雀组Crypto2Crypto3part1part2part3part4 青龙组 Crypto1 题目&#xff1a; from Crypto.Util.number import * from secret import flagp getPrime(512) q getPrime(512) n p * q d getPrime(299) e inverse(d,…...

深度学习基础知识-损失函数

目录 1. 均方误差&#xff08;Mean Squared Error, MSE&#xff09; 2. 平均绝对误差&#xff08;Mean Absolute Error, MAE&#xff09; 3. Huber 损失 4. 交叉熵损失&#xff08;Cross-Entropy Loss&#xff09; 5. KL 散度&#xff08;Kullback-Leibler Divergence&…...

《逆向记录》

这里写自定义目录标题 1.什么是vmp加密VMP加密的工作原理VMP加密的应用场景和优缺点实际应用案例 2.什么是ast混淆3.魔改算法总结 1.什么是vmp加密 ‌VMP加密&#xff08;Virtual Machine Protection&#xff09;‌是一种软件保护技术&#xff0c;旨在通过虚拟化和加密技术来保…...

chatgpt3.5权重参数有多少MB;llama7B权重参数有多少MB

目录 chatgpt3.5权重参数有多少MB llama7B权重参数有多少MB chatgpt3.5权重参数有多少MB 关于ChatGPT 3.5的权重参数占用的存储空间大小,虽然直接给出具体的MB数值可能较为困难(因为这取决于多种因素,如参数表示的精度、是否进行了压缩等),但可以根据其参数量来估算一个…...

ST IoT Wireless 物联网与无线技术 研讨会

一、研讨会背景与目的 ◆ 意法半导体致力于提供可靠且经济实惠的无线连接解决方案,包含Wireless NFC Security & Esim等产品。 ◆ 将智能物体连接到互联网和云&#xff0c;或者从更广泛的意义上说&#xff0c;连接到物联网&#xff08;IoT&#xff09;。 ◆ 远程监控、配…...

PHP实现雪花算法生成唯一ID

引言 雪花算法是Twitter开源的分布式ID生成算法&#xff0c;可以产生64位的ID。其中第一位是固定的正数标识&#xff0c;41位用于存储时间戳&#xff0c;剩下的为机器ID和序列号。通过时间戳、机器ID和序列号的组合&#xff0c;确保每个ID都是唯一的。 PHP代码 1、定义雪花算…...

APP的设置页面,应该怎样尽可能减少用户的输入操作呢

一、引言 在当今数字化时代&#xff0c;移动应用程序&#xff08;APP&#xff09;已经成为人们生活中不可或缺的一部分。无论是社交娱乐、工作学习还是日常生活&#xff0c;我们都离不开各种 APP 的帮助。而 APP 的设置页面作为用户调整应用参数、个性化定制功能的重要入口&am…...

Node.js:内置模块

Node.js&#xff1a;内置模块 Node.jsfs模块读取文件写入文件__dirname path模块路径拼接文件名解析 http模块创建服务 Node.js 传统的JavaScript是运行在浏览器的&#xff0c;浏览器就是其运行环境。 浏览器提供了JavaScript的API&#xff0c;以及解析JavaScript的解析引擎&a…...

3. keil + vscode 进行stm32协同开发

1. 为什么使用vscode 主要还是界面友好&#xff0c;使用习惯问题&#xff0c;vscode 从前端&#xff0c;js, c/c, qt, 仓颉&#xff0c;rust都有很好插件的支持&#xff0c;并且有romote&#xff0c; wsl 等很多插件可以提高效率&#xff0c; 唯一的问题就是要使用插件进行环境…...

React 组件生命周期与 Hooks 简明指南

文章目录 一、类组件的生命周期方法1. 挂载阶段2. 更新阶段3. 卸载阶段 二、函数组件中的 Hooks1. useState2. useEffect3. useContext4. useReducer 结论 好的&#xff0c;我们来详细讲解一下 React 类组件的生命周期方法和函数组件中的钩子&#xff08;hooks&#xff09;。 …...

【springcloud】gateway网关的作用

目录 1. 说明2. 路由转发3. 负载均衡4. 安全认证与授权5. 熔断与降级6. 请求限流7. 监控与日志8. 过滤器功能 1. 说明 1.在Spring Cloud中&#xff0c;Gateway网关扮演着至关重要的角色。2.基于Spring Framework 5、Spring Boot和Project Reactor构建的API网关&#xff0c;专为…...

业务系统对接大模型的基础方案:架构设计与关键步骤

业务系统对接大模型&#xff1a;架构设计与关键步骤 在当今数字化转型的浪潮中&#xff0c;大语言模型&#xff08;LLM&#xff09;已成为企业提升业务效率和创新能力的关键技术之一。将大模型集成到业务系统中&#xff0c;不仅可以优化用户体验&#xff0c;还能为业务决策提供…...

React19源码系列之 事件插件系统

事件类别 事件类型 定义 文档 Event Event 接口表示在 EventTarget 上出现的事件。 Event - Web API | MDN UIEvent UIEvent 接口表示简单的用户界面事件。 UIEvent - Web API | MDN KeyboardEvent KeyboardEvent 对象描述了用户与键盘的交互。 KeyboardEvent - Web…...

鸿蒙中用HarmonyOS SDK应用服务 HarmonyOS5开发一个生活电费的缴纳和查询小程序

一、项目初始化与配置 1. 创建项目 ohpm init harmony/utility-payment-app 2. 配置权限 // module.json5 {"requestPermissions": [{"name": "ohos.permission.INTERNET"},{"name": "ohos.permission.GET_NETWORK_INFO"…...

Python如何给视频添加音频和字幕

在Python中&#xff0c;给视频添加音频和字幕可以使用电影文件处理库MoviePy和字幕处理库Subtitles。下面将详细介绍如何使用这些库来实现视频的音频和字幕添加&#xff0c;包括必要的代码示例和详细解释。 环境准备 在开始之前&#xff0c;需要安装以下Python库&#xff1a;…...

如何理解 IP 数据报中的 TTL?

目录 前言理解 前言 面试灵魂一问&#xff1a;说说对 IP 数据报中 TTL 的理解&#xff1f;我们都知道&#xff0c;IP 数据报由首部和数据两部分组成&#xff0c;首部又分为两部分&#xff1a;固定部分和可变部分&#xff0c;共占 20 字节&#xff0c;而即将讨论的 TTL 就位于首…...

html-<abbr> 缩写或首字母缩略词

定义与作用 <abbr> 标签用于表示缩写或首字母缩略词&#xff0c;它可以帮助用户更好地理解缩写的含义&#xff0c;尤其是对于那些不熟悉该缩写的用户。 title 属性的内容提供了缩写的详细说明。当用户将鼠标悬停在缩写上时&#xff0c;会显示一个提示框。 示例&#x…...

vulnyx Blogger writeup

信息收集 arp-scan nmap 获取userFlag 上web看看 一个默认的页面&#xff0c;gobuster扫一下目录 可以看到扫出的目录中得到了一个有价值的目录/wordpress&#xff0c;说明目标所使用的cms是wordpress&#xff0c;访问http://192.168.43.213/wordpress/然后查看源码能看到 这…...

掌握 HTTP 请求:理解 cURL GET 语法

cURL 是一个强大的命令行工具&#xff0c;用于发送 HTTP 请求和与 Web 服务器交互。在 Web 开发和测试中&#xff0c;cURL 经常用于发送 GET 请求来获取服务器资源。本文将详细介绍 cURL GET 请求的语法和使用方法。 一、cURL 基本概念 cURL 是 "Client URL" 的缩写…...

大数据治理的常见方式

大数据治理的常见方式 大数据治理是确保数据质量、安全性和可用性的系统性方法&#xff0c;以下是几种常见的治理方式&#xff1a; 1. 数据质量管理 核心方法&#xff1a; 数据校验&#xff1a;建立数据校验规则&#xff08;格式、范围、一致性等&#xff09;数据清洗&…...

归并排序:分治思想的高效排序

目录 基本原理 流程图解 实现方法 递归实现 非递归实现 演示过程 时间复杂度 基本原理 归并排序(Merge Sort)是一种基于分治思想的排序算法&#xff0c;由约翰冯诺伊曼在1945年提出。其核心思想包括&#xff1a; 分割(Divide)&#xff1a;将待排序数组递归地分成两个子…...