当前位置: 首页 > news >正文

leetcode35.搜索插入位置

1)题目描述:

2)本题要求使用 时间复杂度O(log n)的算法,这里使用二分查找的方法,这道题本身不复杂,但是,在使用递归调用时,笔者经常把递归结束的边界搞错,这里给出几版代码,做一下讨论

第1版代码:

class Solution {
public:int findMid(vector<int>& nums, int l, int r, int target) {int mid = (l+r)/2;if(nums[mid] == target) {return mid;}else if(l == r) {if(nums[mid] < target) {return mid+1;}else {return mid;}}else if(l > r) {// array is [3, 5, 7, 9, 10], target=8// ...// l=3, r=4  m=3   nums[mid]>target// l=3, r=2  m=2// when l > r, just return lreturn l;}else {if(nums[mid] < target) {l = mid + 1;}else {r = mid - 1;}}return findMid(nums, l, r, target);}int searchInsert(vector<int>& nums, int target) {return findMid(nums, 0, nums.size()-1, target);}
};

这里需要注意的一点是,如果需要继续二分查找,则需要更新左右边界,笔者直觉上认为,如果nums[mid] < target,将左边界更新为mid+1,如果nums[mid] > target,将右边界更新为mid-1,但是在实际执行程序时,这样做可能会出现左边界>右边界的情况,程序进入无限循环,如下图所示:

所以在原始代码的基础上增加了对于"左边界>右边界的情况"的简单处理,当然了,之所以可以简单处理,是因为出现这种情况时,搜索插入位置可以确定了。

第2版代码:

class Solution {
public:int findMid(vector<int>& nums, int l, int r, int target) {int mid = (l+r)/2;if(nums[mid] == target) {return mid;}else if(l == r) {if(nums[mid] < target) {return mid+1;}else {return mid;}}else {if(nums[mid] < target) {l = mid + 1;}else {r = mid;}}return findMid(nums, l, r, target);}int searchInsert(vector<int>& nums, int target) {return findMid(nums, 0, nums.size()-1, target);}
};

在第1版代码的基础上,笔者在想,是否可以避免"左边界>右边界的情况",同时为了要找到插入位置,还要不断地缩小搜索空间,在上面列举的出现"左边界>右边界的情况"的例子中,最后,l=3,r=4,m=3,最后nums[mid]>target,需要将r更新为mid-1,那么这里我们可以做保守处理,将r更新为mid。如果l与r相同,代码做了详尽处理。l=mid+1、r=mid-1的边界更新策略就是没有很好地处理l+1=r的情况,这里检查一下l=mid+1、r=mid的边界更新策略是否能处理r-l=1的情况。如果r-l=1,则mid=(l+l+1)/2=l,如果nums[mid]=target,则搜索插入位置是mid,如果nums[mid]<target,则l保持不变,r更新为mid(上一步的l),如果nums[mid]>target,则l更新为mid+1(上一步的l+1),r保持不变。如果r-l>1,在不断地缩小搜索空间后,总会进入到l=r或r-l=1的情况。

第3版代码:

class Solution {
public:int findMid(vector<int>& nums, int l, int r, int target) {int mid = (l+r)/2;if(mid*2+1 == l+r) {mid++;}if(nums[mid] == target) {return mid;}else if(l == r) {if(nums[mid] < target) {return mid+1;}else {return mid;}}else {if(nums[mid] < target) {l = mid;}else {r = mid - 1;}}return findMid(nums, l, r, target);}int searchInsert(vector<int>& nums, int target) {return findMid(nums, 0, nums.size()-1, target);}
};

这里将第3版代码与第2版做对比,讨论mid与左右边界的关系、以及左右边界的更新策略,当l+r不能整除时,(l+r)/2取下整,举个例子,如果l=3,r=4,则mid应该是3.5,当然计算机默认策略是取下整3,是小于3.5的一个整数,所以在r-l=1时,l与mid是重合的,如果是左边界更新,可以将其更新为mid+1,向右边界靠近,如果是右边界更新,只能将其更新为mid(如果更新为mid-1,则可能出现左边界>右边界的情况),也可以理解,mid=(l+r)/2可能在左右边界的中间位置,也有可能偏左。第3版代码就是在(l+r)不能整除2的情况下,让mid偏右,这时左右边界的更新策略可以改为l=mid,r=mid-1。

4)关于递归,要仔细考虑到自己的代码最后结束的情况有哪几种,这样才能避免未预期的情况。

相关文章:

leetcode35.搜索插入位置

1&#xff09;题目描述&#xff1a; 2&#xff09;本题要求使用 时间复杂度O(log n)的算法&#xff0c;这里使用二分查找的方法&#xff0c;这道题本身不复杂&#xff0c;但是&#xff0c;在使用递归调用时&#xff0c;笔者经常把递归结束的边界搞错&#xff0c;这里给出几版代…...

Redis全系列学习基础篇之位图(bitmap)常用命令的解析

文章目录 描述常用命令及解析常用命令解析 应用场景统计不确定时间周期内用户登录情况思路分析实现 统计某一特定时间内活跃用户(登录一次即算活跃)的数量思路分析与实现 描述 bitmap是redis封装的用于针对位(bit)的操作,其特点是计算效率高&#xff0c;占用空间少,常被用来统计…...

Copilot功能

Copilot 1、简介&#xff1a;Copilot是由GitHub与OpenAI共同开发的一款AI编程助手&#xff0c;旨在帮助开发者提高工作效率&#xff0c;改善代码质量。 2、主要功能包括&#xff1a; 1.代码补全&#xff1a;Copilot可以在开发者编写代码时提供代码建议&#xff0c;包括函数、循…...

《GBDT 算法的原理推导》 11-13初始化模型 公式解析

本文是将文章《GBDT 算法的原理推导》中的公式单独拿出来做一个详细的解析&#xff0c;便于初学者更好的理解。 公式(11-13)是GBDT算法的第一步&#xff0c;它描述了如何初始化模型。公式如下&#xff1a; f 0 ( x ) arg ⁡ min ⁡ c ∑ i 1 N L ( y i , c ) f_0(x) \arg \m…...

# Easysearch 与 LLM 融合打造高效智能问答系统

LangChain通过提供统一的抽象层和丰富的工具&#xff0c;极大地简化了LLM应用程序的开发过程&#xff0c;使得开发者能够更加专注于业务逻辑。RAG技术则通过索引和检索生成两步流程&#xff0c;利用最新数据或私有数据作为背景信息来增强大模型的推理能力。然而&#xff0c;对于…...

本地可以插入表记录,生产不能插入表记录

先说解决方案&#xff1a; 切面没有注入容器&#xff0c;在切面这加上Component详情&#xff1a; 大致是这样一个方法&#xff0c;本地运行会插入数据到sys_log表&#xff0c;但部署到服务器上就不会插入&#xff0c;而服务部署三年多了&#xff0c;一个表一直是空的居然没人…...

11.Three.js使用indexeddb前端缓存模型优化前端加载效率

11.Three.js使用indexeddb前端缓存模型优化前端加载效率 1.简述 在使用Three.js做数字孪生应用场景时&#xff0c;我们常常需要用到大量模型或数据。在访问我们的数字孪生应用时&#xff0c;每次刷新都需要从web端进行请求大量的模型数据或其他渲染数据等等&#xff0c;会极大…...

功能测试:方法、流程与工具介绍

功能测试是对产品的各功能进行验证的一种测试方法&#xff0c;旨在确保软件以期望的方式运行并满足设计需求。以下是对功能测试的详细解释&#xff1a; 一、定义与目的 定义&#xff1a;功能测试&#xff08;Functional Testing&#xff09;&#xff0c;也称为行为测试&#…...

【Orange Pi 5 Linux 5.x 内核编程】-设备驱动中的sysfs

设备驱动中的sysfs 文章目录 设备驱动中的sysfs1、sysfs介绍2、内核对象(kobject)介绍3、设备驱动中的SysFS31 在/sys中创建目录3.2 创建sysfs文件3.2.1 创建属性3.2.2 创建sysfs文件4、驱动程序实现5、驱动验证1、sysfs介绍 sysfs是内核导出的虚拟文件系统,类似于/proc。sys…...

微信小程序-全局数据共享/页面间通信

一.全局数据共享 声明全局的变量&#xff0c;在app.js文件里 App({//全局共享的数据globalData:{token:},//设置全局数据setToken(token){this.globalData.tokentoken}})使用 getApp() 获取全局App实例 //返回全局唯一的APP实例 const appInstancegetApp()Page({login(){con…...

java计算机毕设课设—Java聊天室(附源码、文章、相关截图、部署视频)

这是什么系统&#xff1f; 资源获取方式再最下方 java计算机毕设课设—Java聊天室(附源码、文章、相关截图、部署视频) Java聊天室系统是一个基于Java语言开发的在线即时通讯平台&#xff0c;旨在为用户提供一个简单、易用的实时交流环境。该系统支持多用户同时在线交流&…...

图像识别基础认识

import numpy as np import pandas as pd import matplotlib.pyplot as plt import cv2 %matplotlib inline读取图像 img = cv2.imread(shuzi.png) # 显示图像 cv2.imshow(shuzi, img) # 设置窗口大小 #cv2.resizeWindow(shuzi, 800, 600) # 设置宽为800,高为600 cv2.waitKe…...

使用 OpenCV 读取和显示图像与视频

概述 OpenCV 是一个强大的计算机视觉库&#xff0c;广泛应用于图像处理和视频处理等领域。本文将详细介绍如何使用 OpenCV 在 Python 中读取和显示图像以及视频&#xff0c;并通过具体的代码示例来展示整个过程。 环境准备 在开始之前&#xff0c;请确保已经安装了 OpenCV 库…...

【1】Elasticsearch 30分钟快速入门

文章目录 一、Elasticsearch 基本概念及工作原理(一)基本概念(二)工作原理二、Elasticsearch 原生 RESTful 方式的增删改查(一)创建索引(二)插入文档(三)查询文档(四)更新文档(五)删除文档(六)删除索引三、Python SDK 实现增删改查(一)安装 Elasticsearch Py…...

教材管理系统设计与实现

教材管理系统设计与实现 1. 系统概述 教材管理系统是一个基于PHP和SQL的Web应用程序&#xff0c;旨在为学校提供一个高效的教材管理平台。该系统可以帮助管理员录入教材信息、教师查询和申请教材、学生查询教材信息&#xff0c;提高教材管理的效率和透明度。 2. 技术栈 前端…...

软考(中级-软件设计师)数据库篇(1101)

第6章 数据库系统基础知识 一、基本概念 1、数据库 数据库&#xff08;Database &#xff0c;DB&#xff09;是指长期存储在计算机内的、有组织的、可共享的数据集合。数据库中的数据按一定的数据模型组织、描述和存储&#xff0c;具有较小的冗余度、较高的数据独立性和扩展…...

安装nscd及glibc包冲突降级【centos7】

安装nscd及glibc包冲突降级【centos7】 一、查看当前glibc版本二、查找可用的glibc版本三、备份系统和数据四、降级glibc五、验证降级是否成功六、解决其他依赖问题七、测试和验证八、考虑使用容器技术endl [08:41:07 rootcentos7 ~]# yum -y install nscd Loaded plugins: fas…...

Qt字符编码

目前字符编码有以下几种&#xff1a; 1、UTF-8 UTF-8编码是Unicode字符集的一种编码方式(CEF)&#xff0c;其特点是使用变长字节数(即变长码元序列、变宽码元序列)来编码。一般是1到4个字节&#xff0c;当然&#xff0c;也可以更长。 2、UTF-16 UTF-16是Unicode字符编码五层次…...

Ubuntu用docker安装AWVS和Nessus(含破解)

Ubuntu安装AWVS(更多搜索&#xff1a;超详细Ubuntu用docker安装AWVS和Nessus) 首先安装docker&#xff0c;通过dockers镜像安装很方便&#xff0c;且很快&#xff1b;Docker及Docker-Compose-安装教程。 1.通过docker search awvs命令查看镜像&#xff1b; docker search awvs…...

tauri开发中如果取消了默认的菜单项,复制黏贴撤销等功能也就没有了,解决办法

取消默认的菜单项&#xff1a;清除tauri默认的菜单项&#xff0c;让顶部的菜单menu不显示-CSDN博客 就是通过配置空菜单&#xff0c;让菜单不显示&#xff0c;但是这个引发的问题就是复制黏贴撤销等功能也就没有了&#xff0c;解决办法&#xff1a; 新增加编辑下的子菜单&…...

从零开始打造 OpenSTLinux 6.6 Yocto 系统(基于STM32CubeMX)(九)

设备树移植 和uboot设备树修改的内容同步到kernel将设备树stm32mp157d-stm32mp157daa1-mx.dts复制到内核源码目录下 源码修改及编译 修改arch/arm/boot/dts/st/Makefile&#xff0c;新增设备树编译 stm32mp157f-ev1-m4-examples.dtb \stm32mp157d-stm32mp157daa1-mx.dtb修改…...

【Web 进阶篇】优雅的接口设计:统一响应、全局异常处理与参数校验

系列回顾&#xff1a; 在上一篇中&#xff0c;我们成功地为应用集成了数据库&#xff0c;并使用 Spring Data JPA 实现了基本的 CRUD API。我们的应用现在能“记忆”数据了&#xff01;但是&#xff0c;如果你仔细审视那些 API&#xff0c;会发现它们还很“粗糙”&#xff1a;有…...

数据库分批入库

今天在工作中&#xff0c;遇到一个问题&#xff0c;就是分批查询的时候&#xff0c;由于批次过大导致出现了一些问题&#xff0c;一下是问题描述和解决方案&#xff1a; 示例&#xff1a; // 假设已有数据列表 dataList 和 PreparedStatement pstmt int batchSize 1000; // …...

项目部署到Linux上时遇到的错误(Redis,MySQL,无法正确连接,地址占用问题)

Redis无法正确连接 在运行jar包时出现了这样的错误 查询得知问题核心在于Redis连接失败&#xff0c;具体原因是客户端发送了密码认证请求&#xff0c;但Redis服务器未设置密码 1.为Redis设置密码&#xff08;匹配客户端配置&#xff09; 步骤&#xff1a; 1&#xff09;.修…...

docker 部署发现spring.profiles.active 问题

报错&#xff1a; org.springframework.boot.context.config.InvalidConfigDataPropertyException: Property spring.profiles.active imported from location class path resource [application-test.yml] is invalid in a profile specific resource [origin: class path re…...

Reasoning over Uncertain Text by Generative Large Language Models

https://ojs.aaai.org/index.php/AAAI/article/view/34674/36829https://ojs.aaai.org/index.php/AAAI/article/view/34674/36829 1. 概述 文本中的不确定性在许多语境中传达,从日常对话到特定领域的文档(例如医学文档)(Heritage 2013;Landmark、Gulbrandsen 和 Svenevei…...

STM32---外部32.768K晶振(LSE)无法起振问题

晶振是否起振主要就检查两个1、晶振与MCU是否兼容&#xff1b;2、晶振的负载电容是否匹配 目录 一、判断晶振与MCU是否兼容 二、判断负载电容是否匹配 1. 晶振负载电容&#xff08;CL&#xff09;与匹配电容&#xff08;CL1、CL2&#xff09;的关系 2. 如何选择 CL1 和 CL…...

Cilium动手实验室: 精通之旅---13.Cilium LoadBalancer IPAM and L2 Service Announcement

Cilium动手实验室: 精通之旅---13.Cilium LoadBalancer IPAM and L2 Service Announcement 1. LAB环境2. L2公告策略2.1 部署Death Star2.2 访问服务2.3 部署L2公告策略2.4 服务宣告 3. 可视化 ARP 流量3.1 部署新服务3.2 准备可视化3.3 再次请求 4. 自动IPAM4.1 IPAM Pool4.2 …...

HybridVLA——让单一LLM同时具备扩散和自回归动作预测能力:训练时既扩散也回归,但推理时则扩散

前言 如上一篇文章《dexcap升级版之DexWild》中的前言部分所说&#xff0c;在叠衣服的过程中&#xff0c;我会带着团队对比各种模型、方法、策略&#xff0c;毕竟针对各个场景始终寻找更优的解决方案&#xff0c;是我个人和我司「七月在线」的职责之一 且个人认为&#xff0c…...

c# 局部函数 定义、功能与示例

C# 局部函数&#xff1a;定义、功能与示例 1. 定义与功能 局部函数&#xff08;Local Function&#xff09;是嵌套在另一个方法内部的私有方法&#xff0c;仅在包含它的方法内可见。 • 作用&#xff1a;封装仅用于当前方法的逻辑&#xff0c;避免污染类作用域&#xff0c;提升…...