leetcode35.搜索插入位置
1)题目描述:

2)本题要求使用 时间复杂度O(log n)的算法,这里使用二分查找的方法,这道题本身不复杂,但是,在使用递归调用时,笔者经常把递归结束的边界搞错,这里给出几版代码,做一下讨论
第1版代码:
class Solution {
public:int findMid(vector<int>& nums, int l, int r, int target) {int mid = (l+r)/2;if(nums[mid] == target) {return mid;}else if(l == r) {if(nums[mid] < target) {return mid+1;}else {return mid;}}else if(l > r) {// array is [3, 5, 7, 9, 10], target=8// ...// l=3, r=4 m=3 nums[mid]>target// l=3, r=2 m=2// when l > r, just return lreturn l;}else {if(nums[mid] < target) {l = mid + 1;}else {r = mid - 1;}}return findMid(nums, l, r, target);}int searchInsert(vector<int>& nums, int target) {return findMid(nums, 0, nums.size()-1, target);}
};
这里需要注意的一点是,如果需要继续二分查找,则需要更新左右边界,笔者直觉上认为,如果nums[mid] < target,将左边界更新为mid+1,如果nums[mid] > target,将右边界更新为mid-1,但是在实际执行程序时,这样做可能会出现左边界>右边界的情况,程序进入无限循环,如下图所示:

所以在原始代码的基础上增加了对于"左边界>右边界的情况"的简单处理,当然了,之所以可以简单处理,是因为出现这种情况时,搜索插入位置可以确定了。
第2版代码:
class Solution {
public:int findMid(vector<int>& nums, int l, int r, int target) {int mid = (l+r)/2;if(nums[mid] == target) {return mid;}else if(l == r) {if(nums[mid] < target) {return mid+1;}else {return mid;}}else {if(nums[mid] < target) {l = mid + 1;}else {r = mid;}}return findMid(nums, l, r, target);}int searchInsert(vector<int>& nums, int target) {return findMid(nums, 0, nums.size()-1, target);}
};
在第1版代码的基础上,笔者在想,是否可以避免"左边界>右边界的情况",同时为了要找到插入位置,还要不断地缩小搜索空间,在上面列举的出现"左边界>右边界的情况"的例子中,最后,l=3,r=4,m=3,最后nums[mid]>target,需要将r更新为mid-1,那么这里我们可以做保守处理,将r更新为mid。如果l与r相同,代码做了详尽处理。l=mid+1、r=mid-1的边界更新策略就是没有很好地处理l+1=r的情况,这里检查一下l=mid+1、r=mid的边界更新策略是否能处理r-l=1的情况。如果r-l=1,则mid=(l+l+1)/2=l,如果nums[mid]=target,则搜索插入位置是mid,如果nums[mid]<target,则l保持不变,r更新为mid(上一步的l),如果nums[mid]>target,则l更新为mid+1(上一步的l+1),r保持不变。如果r-l>1,在不断地缩小搜索空间后,总会进入到l=r或r-l=1的情况。
第3版代码:
class Solution {
public:int findMid(vector<int>& nums, int l, int r, int target) {int mid = (l+r)/2;if(mid*2+1 == l+r) {mid++;}if(nums[mid] == target) {return mid;}else if(l == r) {if(nums[mid] < target) {return mid+1;}else {return mid;}}else {if(nums[mid] < target) {l = mid;}else {r = mid - 1;}}return findMid(nums, l, r, target);}int searchInsert(vector<int>& nums, int target) {return findMid(nums, 0, nums.size()-1, target);}
};
这里将第3版代码与第2版做对比,讨论mid与左右边界的关系、以及左右边界的更新策略,当l+r不能整除时,(l+r)/2取下整,举个例子,如果l=3,r=4,则mid应该是3.5,当然计算机默认策略是取下整3,是小于3.5的一个整数,所以在r-l=1时,l与mid是重合的,如果是左边界更新,可以将其更新为mid+1,向右边界靠近,如果是右边界更新,只能将其更新为mid(如果更新为mid-1,则可能出现左边界>右边界的情况),也可以理解,mid=(l+r)/2可能在左右边界的中间位置,也有可能偏左。第3版代码就是在(l+r)不能整除2的情况下,让mid偏右,这时左右边界的更新策略可以改为l=mid,r=mid-1。
4)关于递归,要仔细考虑到自己的代码最后结束的情况有哪几种,这样才能避免未预期的情况。
相关文章:
leetcode35.搜索插入位置
1)题目描述: 2)本题要求使用 时间复杂度O(log n)的算法,这里使用二分查找的方法,这道题本身不复杂,但是,在使用递归调用时,笔者经常把递归结束的边界搞错,这里给出几版代…...
Redis全系列学习基础篇之位图(bitmap)常用命令的解析
文章目录 描述常用命令及解析常用命令解析 应用场景统计不确定时间周期内用户登录情况思路分析实现 统计某一特定时间内活跃用户(登录一次即算活跃)的数量思路分析与实现 描述 bitmap是redis封装的用于针对位(bit)的操作,其特点是计算效率高,占用空间少,常被用来统计…...
Copilot功能
Copilot 1、简介:Copilot是由GitHub与OpenAI共同开发的一款AI编程助手,旨在帮助开发者提高工作效率,改善代码质量。 2、主要功能包括: 1.代码补全:Copilot可以在开发者编写代码时提供代码建议,包括函数、循…...
《GBDT 算法的原理推导》 11-13初始化模型 公式解析
本文是将文章《GBDT 算法的原理推导》中的公式单独拿出来做一个详细的解析,便于初学者更好的理解。 公式(11-13)是GBDT算法的第一步,它描述了如何初始化模型。公式如下: f 0 ( x ) arg min c ∑ i 1 N L ( y i , c ) f_0(x) \arg \m…...
# Easysearch 与 LLM 融合打造高效智能问答系统
LangChain通过提供统一的抽象层和丰富的工具,极大地简化了LLM应用程序的开发过程,使得开发者能够更加专注于业务逻辑。RAG技术则通过索引和检索生成两步流程,利用最新数据或私有数据作为背景信息来增强大模型的推理能力。然而,对于…...
本地可以插入表记录,生产不能插入表记录
先说解决方案: 切面没有注入容器,在切面这加上Component详情: 大致是这样一个方法,本地运行会插入数据到sys_log表,但部署到服务器上就不会插入,而服务部署三年多了,一个表一直是空的居然没人…...
11.Three.js使用indexeddb前端缓存模型优化前端加载效率
11.Three.js使用indexeddb前端缓存模型优化前端加载效率 1.简述 在使用Three.js做数字孪生应用场景时,我们常常需要用到大量模型或数据。在访问我们的数字孪生应用时,每次刷新都需要从web端进行请求大量的模型数据或其他渲染数据等等,会极大…...
功能测试:方法、流程与工具介绍
功能测试是对产品的各功能进行验证的一种测试方法,旨在确保软件以期望的方式运行并满足设计需求。以下是对功能测试的详细解释: 一、定义与目的 定义:功能测试(Functional Testing),也称为行为测试&#…...
【Orange Pi 5 Linux 5.x 内核编程】-设备驱动中的sysfs
设备驱动中的sysfs 文章目录 设备驱动中的sysfs1、sysfs介绍2、内核对象(kobject)介绍3、设备驱动中的SysFS31 在/sys中创建目录3.2 创建sysfs文件3.2.1 创建属性3.2.2 创建sysfs文件4、驱动程序实现5、驱动验证1、sysfs介绍 sysfs是内核导出的虚拟文件系统,类似于/proc。sys…...
微信小程序-全局数据共享/页面间通信
一.全局数据共享 声明全局的变量,在app.js文件里 App({//全局共享的数据globalData:{token:},//设置全局数据setToken(token){this.globalData.tokentoken}})使用 getApp() 获取全局App实例 //返回全局唯一的APP实例 const appInstancegetApp()Page({login(){con…...
java计算机毕设课设—Java聊天室(附源码、文章、相关截图、部署视频)
这是什么系统? 资源获取方式再最下方 java计算机毕设课设—Java聊天室(附源码、文章、相关截图、部署视频) Java聊天室系统是一个基于Java语言开发的在线即时通讯平台,旨在为用户提供一个简单、易用的实时交流环境。该系统支持多用户同时在线交流&…...
图像识别基础认识
import numpy as np import pandas as pd import matplotlib.pyplot as plt import cv2 %matplotlib inline读取图像 img = cv2.imread(shuzi.png) # 显示图像 cv2.imshow(shuzi, img) # 设置窗口大小 #cv2.resizeWindow(shuzi, 800, 600) # 设置宽为800,高为600 cv2.waitKe…...
使用 OpenCV 读取和显示图像与视频
概述 OpenCV 是一个强大的计算机视觉库,广泛应用于图像处理和视频处理等领域。本文将详细介绍如何使用 OpenCV 在 Python 中读取和显示图像以及视频,并通过具体的代码示例来展示整个过程。 环境准备 在开始之前,请确保已经安装了 OpenCV 库…...
【1】Elasticsearch 30分钟快速入门
文章目录 一、Elasticsearch 基本概念及工作原理(一)基本概念(二)工作原理二、Elasticsearch 原生 RESTful 方式的增删改查(一)创建索引(二)插入文档(三)查询文档(四)更新文档(五)删除文档(六)删除索引三、Python SDK 实现增删改查(一)安装 Elasticsearch Py…...
教材管理系统设计与实现
教材管理系统设计与实现 1. 系统概述 教材管理系统是一个基于PHP和SQL的Web应用程序,旨在为学校提供一个高效的教材管理平台。该系统可以帮助管理员录入教材信息、教师查询和申请教材、学生查询教材信息,提高教材管理的效率和透明度。 2. 技术栈 前端…...
软考(中级-软件设计师)数据库篇(1101)
第6章 数据库系统基础知识 一、基本概念 1、数据库 数据库(Database ,DB)是指长期存储在计算机内的、有组织的、可共享的数据集合。数据库中的数据按一定的数据模型组织、描述和存储,具有较小的冗余度、较高的数据独立性和扩展…...
安装nscd及glibc包冲突降级【centos7】
安装nscd及glibc包冲突降级【centos7】 一、查看当前glibc版本二、查找可用的glibc版本三、备份系统和数据四、降级glibc五、验证降级是否成功六、解决其他依赖问题七、测试和验证八、考虑使用容器技术endl [08:41:07 rootcentos7 ~]# yum -y install nscd Loaded plugins: fas…...
Qt字符编码
目前字符编码有以下几种: 1、UTF-8 UTF-8编码是Unicode字符集的一种编码方式(CEF),其特点是使用变长字节数(即变长码元序列、变宽码元序列)来编码。一般是1到4个字节,当然,也可以更长。 2、UTF-16 UTF-16是Unicode字符编码五层次…...
Ubuntu用docker安装AWVS和Nessus(含破解)
Ubuntu安装AWVS(更多搜索:超详细Ubuntu用docker安装AWVS和Nessus) 首先安装docker,通过dockers镜像安装很方便,且很快;Docker及Docker-Compose-安装教程。 1.通过docker search awvs命令查看镜像; docker search awvs…...
tauri开发中如果取消了默认的菜单项,复制黏贴撤销等功能也就没有了,解决办法
取消默认的菜单项:清除tauri默认的菜单项,让顶部的菜单menu不显示-CSDN博客 就是通过配置空菜单,让菜单不显示,但是这个引发的问题就是复制黏贴撤销等功能也就没有了,解决办法: 新增加编辑下的子菜单&…...
应用升级/灾备测试时使用guarantee 闪回点迅速回退
1.场景 应用要升级,当升级失败时,数据库回退到升级前. 要测试系统,测试完成后,数据库要回退到测试前。 相对于RMAN恢复需要很长时间, 数据库闪回只需要几分钟。 2.技术实现 数据库设置 2个db_recovery参数 创建guarantee闪回点,不需要开启数据库闪回。…...
简易版抽奖活动的设计技术方案
1.前言 本技术方案旨在设计一套完整且可靠的抽奖活动逻辑,确保抽奖活动能够公平、公正、公开地进行,同时满足高并发访问、数据安全存储与高效处理等需求,为用户提供流畅的抽奖体验,助力业务顺利开展。本方案将涵盖抽奖活动的整体架构设计、核心流程逻辑、关键功能实现以及…...
R语言AI模型部署方案:精准离线运行详解
R语言AI模型部署方案:精准离线运行详解 一、项目概述 本文将构建一个完整的R语言AI部署解决方案,实现鸢尾花分类模型的训练、保存、离线部署和预测功能。核心特点: 100%离线运行能力自包含环境依赖生产级错误处理跨平台兼容性模型版本管理# 文件结构说明 Iris_AI_Deployme…...
从零实现富文本编辑器#5-编辑器选区模型的状态结构表达
先前我们总结了浏览器选区模型的交互策略,并且实现了基本的选区操作,还调研了自绘选区的实现。那么相对的,我们还需要设计编辑器的选区表达,也可以称为模型选区。编辑器中应用变更时的操作范围,就是以模型选区为基准来…...
OkHttp 中实现断点续传 demo
在 OkHttp 中实现断点续传主要通过以下步骤完成,核心是利用 HTTP 协议的 Range 请求头指定下载范围: 实现原理 Range 请求头:向服务器请求文件的特定字节范围(如 Range: bytes1024-) 本地文件记录:保存已…...
网络编程(UDP编程)
思维导图 UDP基础编程(单播) 1.流程图 服务器:短信的接收方 创建套接字 (socket)-----------------------------------------》有手机指定网络信息-----------------------------------------------》有号码绑定套接字 (bind)--------------…...
图表类系列各种样式PPT模版分享
图标图表系列PPT模版,柱状图PPT模版,线状图PPT模版,折线图PPT模版,饼状图PPT模版,雷达图PPT模版,树状图PPT模版 图表类系列各种样式PPT模版分享:图表系列PPT模板https://pan.quark.cn/s/20d40aa…...
代码随想录刷题day30
1、零钱兑换II 给你一个整数数组 coins 表示不同面额的硬币,另给一个整数 amount 表示总金额。 请你计算并返回可以凑成总金额的硬币组合数。如果任何硬币组合都无法凑出总金额,返回 0 。 假设每一种面额的硬币有无限个。 题目数据保证结果符合 32 位带…...
脑机新手指南(七):OpenBCI_GUI:从环境搭建到数据可视化(上)
一、OpenBCI_GUI 项目概述 (一)项目背景与目标 OpenBCI 是一个开源的脑电信号采集硬件平台,其配套的 OpenBCI_GUI 则是专为该硬件设计的图形化界面工具。对于研究人员、开发者和学生而言,首次接触 OpenBCI 设备时,往…...
uniapp 小程序 学习(一)
利用Hbuilder 创建项目 运行到内置浏览器看效果 下载微信小程序 安装到Hbuilder 下载地址 :开发者工具默认安装 设置服务端口号 在Hbuilder中设置微信小程序 配置 找到运行设置,将微信开发者工具放入到Hbuilder中, 打开后出现 如下 bug 解…...
