当前位置: 首页 > news >正文

图像识别基础认识

import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import cv2
%matplotlib inline

读取图像

img = cv2.imread('shuzi.png')
# 显示图像
cv2.imshow('shuzi', img)
# 设置窗口大小
#cv2.resizeWindow('shuzi', 800, 600)  # 设置宽为800,高为600
cv2.waitKey(0)  # 等待按键
cv2.destroyAllWindows()  # 关闭窗口

01 设置感兴趣区域-选择图像的某一部分进行进一步处理

def roi(img,x,y,weight,height):roi = img[y:y+height,x:x+weight]return roi
x,y,w,h = 100, 100, 200, 200  #取图像左上角点
roi = roi(img,x,y,w,h)
cv2.imshow('roi',roi)
cv2.waitKey(0)
cv2.destroyAllWindows()

02 边界填充

cv2.copyMakeBorder() 函数进行边界填充。这个函数允许你在图像的四周添加边框,边框可以是不同的颜色或样式。
cv2.copyMakeBorder(img, top, bottom, left, right, border_type, value=value)
cv2.BORDER_CONSTANT(使用常量值填充边界)/cv2.BORDER_REPLICATE(用边缘的像素值填充边界)/cv2.BORDER_REFLECT(边界填充采用反射的方式)/cv2.BORDER_REFLECT_101(反射区域不包括边缘像素)/cv2.BORDER_WRAP(采用环绕方式填充边界)/cv2.BORDER_TRANSPARENT(用于透明图像的边界填充)
img1 = cv2.imread('dog.jpg')
padding_constant = cv2.copyMakeBorder(img1,50,50,50,50,borderType=cv2.BORDER_CONSTANT,value=(200, 255,65) )
padding_replicate = cv2.copyMakeBorder(img1,50,50,50,50,borderType=cv2.BORDER_REPLICATE)
padding_reflect = cv2.copyMakeBorder(img1,50,50,50,50,borderType=cv2.BORDER_REFLECT)
padding_reflect_101 = cv2.copyMakeBorder(img1,50,50,50,50,borderType=cv2.BORDER_REFLECT_101 )
padding_wrap = cv2.copyMakeBorder(img1,50,50,50,50,borderType=cv2.BORDER_WRAP )
combined_image1 = np.hstack((padding_constant, padding_replicate, padding_reflect))
cv2.imshow('padding_img',combined_image1)
cv2.waitKey(0)
cv2.destroyAllWindows()
combined_image2 = np.hstack((padding_constant, padding_reflect_101, padding_wrap))
cv2.imshow('padding_img2',combined_image2)
cv2.waitKey(0)
cv2.destroyAllWindows()
03 数值计算
cv2.add(加法),cv2.subtract(减法)-加可能导致饱和(超过255)会截断到255。减可能会变为负值(会被截断为0),这通常是背景减除的效果。
addWeighted(img1, alpha, img2, beta, 0)其中0为偏移量
import cv2
import numpy as np
img1 = cv2.imread('dog.jpg')
img2 = cv2.imread('color.png')
img1 = cv2.resize(img1,(500, 500))
img2 = cv2.resize(img2,(500, 500))
#图像加法
add_img = cv2.add(img1,img2)
zong1 = np.hstack((img1,img2,add_img))
cv2.imshow('zong1',zong1)
cv2.waitKey(0)
cv2.destroyAllWindows()#图像减法
sub_image = cv2.subtract(img1, img2)
zong2 = np.hstack((img1,img2,sub_image))
cv2.imshow('zong2',zong2)
cv2.waitKey(0)
cv2.destroyAllWindows()# 图像加权融合
alpha = 0.5  # 权重
beta = 1.0 - alpha
weighted_image = cv2.addWeighted(img1, alpha, img2, beta, 0)
zong3= np.hstack((img1,img2,weighted_image))
cv2.imshow('zong3',zong3)
cv2.waitKey(0)
cv2.destroyAllWindows()
04 图像阈值 -将图像转换为二值图像或减少图像的灰度级数
阈值化的基本思路是:如果像素值大于阈值,则将其设置为最大值(通常是255,表示白色)。如果像素值小于或等于阈值,则将其设置为0(表示黑色)。
常见阈值化方法:全局阈值、自适应阈值、多阈值
常用阈值化类型:cv2.THRESH_BINARY(大于阈值则为255,否则为0)、cv2.THRESH_BINARY_INV(小于阈值则为255,否则为0)、cv2.THRESH_TRUNC(大于阈值的像素值被截断为阈值。)、cv2.THRESH_TOZERO(小于阈值的像素值设置为0,大于阈值的值保持不变。)、cv2.THRESH_TOZERO_INV(大于阈值的像素值设置为0,小于阈值的值保持不变。)
import cv2
import numpy as np
img = cv2.imread('dog.jpg')
threshold_value=180
# 全局阈值化
_, binary_image1 = cv2.threshold(img, threshold_value, 255, cv2.THRESH_BINARY)
zong1= np.hstack((img,binary_image1))
cv2.imshow('zong1',zong1)
cv2.waitKey(0)
cv2.destroyAllWindows()_, binary_image2 = cv2.threshold(img, threshold_value, 255, cv2.THRESH_BINARY_INV)
zong2= np.hstack((img,binary_image2))
cv2.imshow('zong2',zong2)
cv2.waitKey(0)
cv2.destroyAllWindows(

相关文章:

图像识别基础认识

import numpy as np import pandas as pd import matplotlib.pyplot as plt import cv2 %matplotlib inline读取图像 img = cv2.imread(shuzi.png) # 显示图像 cv2.imshow(shuzi, img) # 设置窗口大小 #cv2.resizeWindow(shuzi, 800, 600) # 设置宽为800,高为600 cv2.waitKe…...

使用 OpenCV 读取和显示图像与视频

概述 OpenCV 是一个强大的计算机视觉库,广泛应用于图像处理和视频处理等领域。本文将详细介绍如何使用 OpenCV 在 Python 中读取和显示图像以及视频,并通过具体的代码示例来展示整个过程。 环境准备 在开始之前,请确保已经安装了 OpenCV 库…...

【1】Elasticsearch 30分钟快速入门

文章目录 一、Elasticsearch 基本概念及工作原理(一)基本概念(二)工作原理二、Elasticsearch 原生 RESTful 方式的增删改查(一)创建索引(二)插入文档(三)查询文档(四)更新文档(五)删除文档(六)删除索引三、Python SDK 实现增删改查(一)安装 Elasticsearch Py…...

教材管理系统设计与实现

教材管理系统设计与实现 1. 系统概述 教材管理系统是一个基于PHP和SQL的Web应用程序,旨在为学校提供一个高效的教材管理平台。该系统可以帮助管理员录入教材信息、教师查询和申请教材、学生查询教材信息,提高教材管理的效率和透明度。 2. 技术栈 前端…...

软考(中级-软件设计师)数据库篇(1101)

第6章 数据库系统基础知识 一、基本概念 1、数据库 数据库(Database ,DB)是指长期存储在计算机内的、有组织的、可共享的数据集合。数据库中的数据按一定的数据模型组织、描述和存储,具有较小的冗余度、较高的数据独立性和扩展…...

安装nscd及glibc包冲突降级【centos7】

安装nscd及glibc包冲突降级【centos7】 一、查看当前glibc版本二、查找可用的glibc版本三、备份系统和数据四、降级glibc五、验证降级是否成功六、解决其他依赖问题七、测试和验证八、考虑使用容器技术endl [08:41:07 rootcentos7 ~]# yum -y install nscd Loaded plugins: fas…...

Qt字符编码

目前字符编码有以下几种: 1、UTF-8 UTF-8编码是Unicode字符集的一种编码方式(CEF),其特点是使用变长字节数(即变长码元序列、变宽码元序列)来编码。一般是1到4个字节,当然,也可以更长。 2、UTF-16 UTF-16是Unicode字符编码五层次…...

Ubuntu用docker安装AWVS和Nessus(含破解)

Ubuntu安装AWVS(更多搜索:超详细Ubuntu用docker安装AWVS和Nessus) 首先安装docker,通过dockers镜像安装很方便,且很快;Docker及Docker-Compose-安装教程。 1.通过docker search awvs命令查看镜像; docker search awvs…...

tauri开发中如果取消了默认的菜单项,复制黏贴撤销等功能也就没有了,解决办法

取消默认的菜单项:清除tauri默认的菜单项,让顶部的菜单menu不显示-CSDN博客 就是通过配置空菜单,让菜单不显示,但是这个引发的问题就是复制黏贴撤销等功能也就没有了,解决办法: 新增加编辑下的子菜单&…...

HNU-小学期-专业综合设计

写在前面 选题:大数据技术-智慧交通预测系统 项目github地址(如果有用麻烦点个star与follow):https://github.com/wolfvoid/HNU-ITPS (全部代码以及如何部署参见README) 项目报告:如下&…...

Linux安装es和kibana

安装Elasticsearch 参考文档:https://www.elastic.co/guide/en/elasticsearch/reference/current/targz.html#targz-enable-indices 基本步骤下载包,解压,官网提示: wget https://artifacts.elastic.co/downloads/elasticsearc…...

第二十六章 Vue之在当前组件范围内获取dom元素和组件实例

目录 一、概述 二、获取dom 2.1. 具体步骤 2.2. 完整代码 2.2.1. main.js 2.2.2. App.vue 2.3. BaseChart.vue 三、获取组件实例 3.1. 具体步骤 3.2. 完整代码 3.2.1. main.js 3.2.2. App.vue 3.2.3. BaseForm.vue 3.3. 运行效果 一、概述 我们过去在想要获取一…...

Markdown 区块

再段落开头,使用>符号,在符号后面按空格,效果图是最左侧有一条灰色的粗线,这是一级区块 二级区块和三级区块只需要在一级的后面加>符号,就可以进入二级区块,效果如下图 还可以在区块内部签到无序列表…...

ctf文件上传题小总结与记录

解题思路:先看中间件,文件上传点(字典扫描,会员中心),绕过/验证(黑名单,白名单),解析漏洞,cms,编辑器,最新cve 文件上传漏…...

什么是QAM

什么是调制呢? 调制就是把信号形式转换成适合在信道中传输的一个过程。可分为基带调制和载波调制。我们这里所说的调制都是载波调制。 什么是载波调制呢? 就是把调制信号骑到载波上,方法就是用调制信号去控制载波的参数,使载波…...

GraphQL 与 Elasticsearch 相遇:使用 Hasura DDN 构建可扩展、支持 AI 的应用程序

作者:来自 Elastic Praveen Durairaju GraphQL 提供了一种高效且灵活的数据查询方式。本博客将解释 Hasura DDN 如何与 Elasticsearch 配合使用,以实现高性能和元数据驱动的数据访问。 此示例的代码和设置可在此 GitHub 存储库 - elasticsearch-subgraph…...

面试题整理 3

总结了某公司面试遇到的值得整理记录的面试题,比较侧重于Redis方面。 目录 Redis持久化配置 RDB AOF Redis rdb日志文件路径编辑 命令行参数设置 Redis事务 Redis事务介绍 Redis事务阶段 watch监听 Mysql隔离级别 1.READ UNCOMMITTED 2.READ COMMITTED …...

数据结构(Java)—— 认识泛型

1. 包装类 在学习泛型前我们需要先了解一下包装类 在 Java 中,由于基本类型不是继承自 Object ,为了在泛型代码中可以支持基本类型, Java 给每个基本类型都对应了一个包装类型。 1.1 基本数据类型和对应的包装类 基本数据类型包装类byteByt…...

处理后的视频如何加上音频信息?

总方案:原来模型对图像进行每帧处理,保留后的视频自然失去了audio信息,因此先用ffmpeg处理得到audio,原输出video加上audio即可,也采用ffmpeg处理。 imageio库用于读取和写入视频文件,并且你正在使用img_cartoon模型处理每一帧图像。然而,这段代码只处理了视频的图像部…...

02LangChain 实战课——安装入门

LangChain安装入门 一、大语言模型简介 大语言模型是利用深度学习技术,尤其是神经网络,来理解和生成人类语言的人工智能模型。这些模型因其庞大的参数数量而得名,能够理解和生成复杂的语言模式。它们通过预测下一个词来训练,基于…...

Ubuntu系统下交叉编译openssl

一、参考资料 OpenSSL&&libcurl库的交叉编译 - hesetone - 博客园 二、准备工作 1. 编译环境 宿主机:Ubuntu 20.04.6 LTSHost:ARM32位交叉编译器:arm-linux-gnueabihf-gcc-11.1.0 2. 设置交叉编译工具链 在交叉编译之前&#x…...

ABAP设计模式之---“简单设计原则(Simple Design)”

“Simple Design”(简单设计)是软件开发中的一个重要理念,倡导以最简单的方式实现软件功能,以确保代码清晰易懂、易维护,并在项目需求变化时能够快速适应。 其核心目标是避免复杂和过度设计,遵循“让事情保…...

Java编程之桥接模式

定义 桥接模式(Bridge Pattern)属于结构型设计模式,它的核心意图是将抽象部分与实现部分分离,使它们可以独立地变化。这种模式通过组合关系来替代继承关系,从而降低了抽象和实现这两个可变维度之间的耦合度。 用例子…...

深度剖析 DeepSeek 开源模型部署与应用:策略、权衡与未来走向

在人工智能技术呈指数级发展的当下,大模型已然成为推动各行业变革的核心驱动力。DeepSeek 开源模型以其卓越的性能和灵活的开源特性,吸引了众多企业与开发者的目光。如何高效且合理地部署与运用 DeepSeek 模型,成为释放其巨大潜力的关键所在&…...

Python 高效图像帧提取与视频编码:实战指南

Python 高效图像帧提取与视频编码:实战指南 在音视频处理领域,图像帧提取与视频编码是基础但极具挑战性的任务。Python 结合强大的第三方库(如 OpenCV、FFmpeg、PyAV),可以高效处理视频流,实现快速帧提取、压缩编码等关键功能。本文将深入介绍如何优化这些流程,提高处理…...

API网关Kong的鉴权与限流:高并发场景下的核心实践

🔥「炎码工坊」技术弹药已装填! 点击关注 → 解锁工业级干货【工具实测|项目避坑|源码燃烧指南】 引言 在微服务架构中,API网关承担着流量调度、安全防护和协议转换的核心职责。作为云原生时代的代表性网关,Kong凭借其插件化架构…...

消息队列系统设计与实践全解析

文章目录 🚀 消息队列系统设计与实践全解析🔍 一、消息队列选型1.1 业务场景匹配矩阵1.2 吞吐量/延迟/可靠性权衡💡 权衡决策框架 1.3 运维复杂度评估🔧 运维成本降低策略 🏗️ 二、典型架构设计2.1 分布式事务最终一致…...

加密通信 + 行为分析:运营商行业安全防御体系重构

在数字经济蓬勃发展的时代,运营商作为信息通信网络的核心枢纽,承载着海量用户数据与关键业务传输,其安全防御体系的可靠性直接关乎国家安全、社会稳定与企业发展。随着网络攻击手段的不断升级,传统安全防护体系逐渐暴露出局限性&a…...

CppCon 2015 学习:Time Programming Fundamentals

Civil Time 公历时间 特点: 共 6 个字段: Year(年)Month(月)Day(日)Hour(小时)Minute(分钟)Second(秒) 表示…...

Spring AOP代理对象生成原理

代理对象生成的关键类是【AnnotationAwareAspectJAutoProxyCreator】,这个类继承了【BeanPostProcessor】是一个后置处理器 在bean对象生命周期中初始化时执行【org.springframework.beans.factory.config.BeanPostProcessor#postProcessAfterInitialization】方法时…...