基于MATLAB典型去雾算法代码
1.3.1 Rentinex理论
Retinex(视网膜“Retina”和大脑皮层“Cortex”的缩写)理论是一种建立在科学实验和科学分析基础上的基于人类视觉系统(Human Visual System)的图像增强理论。该算法的基本原理模型最早是由Edwin Land(埃德温•兰德)于1971年提出的一种被称为的色彩的理论,并在颜色恒常性的基础上提出的一种图像增强方法。Retinex 理论的基本内容是物体的颜色是由物体对长波(红)、中波(绿)和短波(蓝)光线的反射能力决定的,而不是由反射光强度的绝对值决定的;物体的色彩不受光照非均性的影响,具有一致性,即Retinex理论是以色感一致性(颜色恒常性)为基础的。
根据Edwin Land提出的理论,一幅给定的图像S(x,y)分解成两幅不同的图像:反射物体图像R(x,y)和入射光图像L(x,y),其原理示意图如图8.3-1所示。

对于观察图像S中的每个点(x,y),用公式可以表示为:
S(x,y)=R(x,y)×L(x,y) (1.3.1)
实际上,Retinex理论就是通过图像S来得到物体的反射性质R,也就是去除了入射光L的性质从而得到物体原本该有的样子。
1.3.2 基于Retinex理论的图像增强的基本步骤
步骤一: 利用取对数的方法将照射光分量和反射光分量分离,即:
S'(x, y)=r(x, y)+l(x, y)=log(R(x, y))+log(L(x, y));
步骤二:用高斯模板对原图像做卷积,即相当于对原图像做低通滤波,得到低通滤波后的图像D(x,y),F(x, y)表示高斯滤波函数:
D(x, y)=S(x, y) *F(x, y);
步骤三:在对数域中,用原图像减去低通滤波后的图像,得到高频增强的图像G(x, y):
G(x,y)=S'(x, y)-log(D(x, y)) ;
步骤四:对G(x,y)取反对数,得到增强后的图像R(x, y):
R(x, y)=exp(G(x, y));
步骤五:对R(x,y)做对比度增强,得到最终的结果图像。
例程1.3.1
****************************************************************************************
clear;
close all;
% 读入图像
I=imread('wu.png');
% 取输入图像的R分量
R=I(:,:,1);
[N1,M1]=size(R);
% 对R分量进行数据转换,并对其取对数
R0=double(R);
Rlog=log(R0+1);
% 对R分量进行二维傅里叶变换
Rfft2=fft2(R0);
% 形成高斯滤波函数
sigma=250;
F = zeros(N1,M1);
for i=1:N1
for j=1:M1
F(i,j)=exp(-((i-N1/2)^2+(j-M1/2)^2)/(2*sigma*sigma));
end
end
F = F./(sum(F(:)));
% 对高斯滤波函数进行二维傅里叶变换
Ffft=fft2(double(F));
% 对R分量与高斯滤波函数进行卷积运算
DR0=Rfft2.*Ffft;
DR=ifft2(DR0);
% 在对数域中,用原图像减去低通滤波后的图像,得到高频增强的图像
DRdouble=double(DR);
DRlog=log(DRdouble+1);
Rr=Rlog-DRlog;
% 取反对数,得到增强后的图像分量
EXPRr=exp(Rr);
% 对增强后的图像进行对比度拉伸增强
MIN = min(min(EXPRr));
MAX = max(max(EXPRr));
EXPRr = (EXPRr-MIN)/(MAX-MIN);
EXPRr=adapthisteq(EXPRr);
% 取输入图像的G分量
G=I(:,:,2);
[N1,M1]=size(G);
% 对G分量进行数据转换,并对其取对数
G0=double(G);
Glog=log(G0+1);
% 对G分量进行二维傅里叶变换
Gfft2=fft2(G0);
% 形成高斯滤波函数
sigma=250;
for i=1:N1
for j=1:M1
F(i,j)=exp(-((i-N1/2)^2+(j-M1/2)^2)/(2*sigma*sigma));
end
end
F = F./(sum(F(:)));
% 对高斯滤波函数进行二维傅里叶变换
Ffft=fft2(double(F));
% 对G分量与高斯滤波函数进行卷积运算
DG0=Gfft2.*Ffft;
DG=ifft2(DG0);
% 在对数域中,用原图像减去低通滤波后的图像,得到高频增强的图像
DGdouble=double(DG);
DGlog=log(DGdouble+1);
Gg=Glog-DGlog;
% 取反对数,得到增强后的图像分量
EXPGg=exp(Gg);
% 对增强后的图像进行对比度拉伸增强
MIN = min(min(EXPGg));
MAX = max(max(EXPGg));
EXPGg = (EXPGg-MIN)/(MAX-MIN);
EXPGg=adapthisteq(EXPGg);
% 取输入图像的B分量
B=I(:,:,3);
[N1,M1]=size(B);
% 对B分量进行数据转换,并对其取对数
B0=double(B);
Blog=log(B0+1);
% 对B分量进行二维傅里叶变换
Bfft2=fft2(B0);
% 形成高斯滤波函数
sigma=250;
for i=1:N1
for j=1:M1
F(i,j)=exp(-((i-N1/2)^2+(j-M1/2)^2)/(2*sigma*sigma));
end
end
F = F./(sum(F(:)));
% 对高斯滤波函数进行二维傅里叶变换
Ffft=fft2(double(F));
% 对B分量与高斯滤波函数进行卷积运算
DB0=Gfft2.*Ffft;
DB=ifft2(DB0);
% 在对数域中,用原图像减去低通滤波后的图像,得到高频增强的图像
DBdouble=double(DB);
DBlog=log(DBdouble+1);
Bb=Blog-DBlog;
EXPBb=exp(Bb);
% 对增强后的图像进行对比度拉伸增强
MIN = min(min(EXPBb));
MAX = max(max(EXPBb));
EXPBb = (EXPBb-MIN)/(MAX-MIN);
EXPBb=adapthisteq(EXPBb);
% 对增强后的图像R、G、B分量进行融合
I0(:,:,1)=EXPRr;
I0(:,:,2)=EXPGg;
I0(:,:,3)=EXPBb;
% 显示运行结果
subplot(121),imshow(I);
subplot(122),imshow(I0);

相关文章:
基于MATLAB典型去雾算法代码
1.3.1 Rentinex理论 Retinex(视网膜“Retina”和大脑皮层“Cortex”的缩写)理论是一种建立在科学实验和科学分析基础上的基于人类视觉系统(Human Visual System)的图像增强理论。该算法的基本原理模型最早是由Edwin Land…...
FrankenPHP实践
目录 1. 说明 2. 程序修改 3. 性能测试 4. 配置 4.1 Docker化部署 4.2 泛域名和证书设置 4.3 相关命令 5. 要点: 6. 参考 1. 说明 Frankenphp是一个先进的,结合了高性能Caddy服务器的PHP环境框架,它允许用户只需要少量改动ÿ…...
嵌入式硬件电子电路设计(一)开关电源Buck电路
目录 Buck电路基本结构 1. 开关闭合(SW 闭合) 2. 开关断开(SW 断开) 3. 开关控制和占空比 MP1584电路分析 其他Buck芯片的电路参考 Buck电路基本结构 下图是简化之后的BUCK电路主回路。下面分析输出电压的产生K闭合后&…...
java项目之协力服装厂服装生产管理系统的设计与实现(springboot)
风定落花生,歌声逐流水,大家好我是风歌,混迹在java圈的辛苦码农。今天要和大家聊的是一款基于springboot的协力服装厂服装生产管理系统的设计与实现。项目源码以及部署相关请联系风歌,文末附上联系信息 。 项目简介: …...
Java虚拟机的历程(jvm01)
Java虚拟机的历程(jvm01) Java虚拟机(JVM)作为Java语言的核心技术之一,自诞生以来经历了多次迭代与演变。不同的虚拟机在性能、功能以及适用场景上各有侧重。本文将介绍Java虚拟机发展历程中的一些重要虚拟机…...
[代码随想录Day4打卡] 24. 两两交换链表中的节点 19.删除链表的倒数第N个节点 面试题 02.07. 链表相交 142.环形链表II 总结
24. 两两交换链表中的节点 题目: 给定一个链表,两两交换其中相邻的节点,并返回交换后的链表。 你不能只是单纯的改变节点内部的值,而是需要实际的进行节点交换。 重点: 明确具体交换怎么做。交换其中1,2…...
java项目之校园周边美食探索及分享平台(springboot)
风定落花生,歌声逐流水,大家好我是风歌,混迹在java圈的辛苦码农。今天要和大家聊的是一款基于springboot的校园周边美食探索及分享平台。项目源码以及部署相关请联系风歌,文末附上联系信息 。 项目简介: 校园周边美食…...
支持 Mermaid 语言预览,用通义灵码画流程图
想像看图片一样快速读复杂代码和架构?通义灵码上新功能:智能问答支持 Mermaid 语言的预览模式,即支持代码逻辑可视化,可以把每段代码画成流程图,像脑图工具一样画出代码逻辑和框架。 操作步骤:选中代码块&a…...
cangjie仓颉程序设计-数据结构(四)
文章目录 ArrayListLinkedListHashSetHashMapTreeMap 本专栏还在持续更新: Cangjie仓颉程序设计-个人总结 这是双子专栏: 仓颉编程cangjie刷题录 这些数据结构都在std.collection.*中。暂时官方包还没有stack, queue等数据结构。服了 import std.coll…...
Redis中储存含LocalDateTime属性对象的序列化实现
目录 1.问题1 向Redis中存入序列化对象 1.1引入 : 1.2解决方案: 1.2.1首先引入依赖 1.2.2然后在RedisConfig中进行配置 1.3 介绍下ObjectMapper 1.3.1 ObjectMapper 1.3.2 objectMapper.registerModule(new JavaTimeModule()); 1.3.3 GenericJackson2Js…...
蚁剑的介绍和使用
蚁剑介绍 蚁剑(AntSword)是一个开源的跨平台网站管理工具,主要用于渗透测试和安全研究。它提供了一个图形化界面,方便用户管理和操作被攻陷的网站。 安装教程: github官网:https://github.com/AntSwordPro…...
C++之多态的深度剖析(2)
前言 在前面内容中,我们对多态进行了基本的了解,对其中的虚函数进行着重的介绍,本节内容我们将进一步对多态的底层进行观察了解看看它是如何实现的。 多态如何实现 从底层的角度Func函数中ptr->BuyTicket(),是如何作为ptr指向P…...
一篇文章 介绍 shiro反序列化漏洞
shiro反序列化漏洞 Shiro-550反序列化漏洞(CVE-2016-4437) 漏洞简介 shiro-550主要是由shiro的RememberMe内容反序列化导致的命令执行漏洞,造成的原因是默认加密密钥是硬编码在shiro源码中,任何有权访问源代码的人都可以知道默认加…...
pyav保存视频
目录 imageio替代pyav imageio替代pyav import imageio import numpy as np import torch# 创建一个随机的图像张量,形状为 (N, C, H, W) # 这里 N 30(帧数),C 3(通道数),H 64(…...
.bixi勒索病毒来袭:如何防止文件加密与数据丢失?
导言 在网络威胁剧烈的今天,勒索病毒已成为企业和个人面临的重大安全挑战,其中虫洞勒索病毒习得高强度的加密手段和急剧传播的特性引起关注。一旦感染,就会加密关键数据并索要赎金,导致数据无法访问并带来巨大的财务损失。更为严…...
MySQL安装配置教程
以下是 MySQL 在 Windows 系统下的安装配置教程: 1. 下载 MySQL 访问 MySQL 官方网站(https://dev.mysql.com/downloads/mysql/),根据您的操作系统版本(32 位或 64 位)选择合适的 MySQL 安装包。一般建议下载社区版(Community Server),它是免费且功能丰富的版本。2. …...
Pandas进行数据查看与检查
在数据分析的工作流中,数据的初步查看与检查是非常重要的步骤。通过这一步,可以快速了解数据的结构、属性以及一些关键的统计信息,确保数据符合预期,或者发现数据中的潜在问题。 借助 pandas 库中的常用方法,如 DataFrame.head()、DataFrame.tail()、DataFrame.info() 和…...
MySQL中between and的基本用法、范围查询
文章目录 一、between and语法二、使用示例2.1、between and数值查询2.2、between and时间范围查询2.3、not between and示例 BETWEEN AND操作符可以用于数值、日期等类型的字段,包括边界值。 一、between and语法 MySQL中的BETWEEN AND操作符用于在两个值之间选择…...
[ 问题解决篇 ] 解决远程桌面安全登录框的问题
🍬 博主介绍 👨🎓 博主介绍:大家好,我是 _PowerShell ,很高兴认识大家~ ✨主攻领域:【渗透领域】【数据通信】 【通讯安全】 【web安全】【面试分析】 🎉点赞➕评论➕收藏 养成习…...
ctfshow——web(总结持续更新)
文章目录 1、基础知识部分2、php伪协议2.1 php://input协议2.2 data://text/plain协议 3、webshell连接工具3.1 蚁剑连接一句话木马 4、各个web中间件重要文件路径4.1 Nginx 5、sqlmap使用6、php特性6.1 md5加密漏洞 7、TOP 10漏洞7.1 SQL注入 1、基础知识部分 识别base64编码…...
测试微信模版消息推送
进入“开发接口管理”--“公众平台测试账号”,无需申请公众账号、可在测试账号中体验并测试微信公众平台所有高级接口。 获取access_token: 自定义模版消息: 关注测试号:扫二维码关注测试号。 发送模版消息: import requests da…...
8k长序列建模,蛋白质语言模型Prot42仅利用目标蛋白序列即可生成高亲和力结合剂
蛋白质结合剂(如抗体、抑制肽)在疾病诊断、成像分析及靶向药物递送等关键场景中发挥着不可替代的作用。传统上,高特异性蛋白质结合剂的开发高度依赖噬菌体展示、定向进化等实验技术,但这类方法普遍面临资源消耗巨大、研发周期冗长…...
C++ 基础特性深度解析
目录 引言 一、命名空间(namespace) C 中的命名空间 与 C 语言的对比 二、缺省参数 C 中的缺省参数 与 C 语言的对比 三、引用(reference) C 中的引用 与 C 语言的对比 四、inline(内联函数…...
SiFli 52把Imagie图片,Font字体资源放在指定位置,编译成指定img.bin和font.bin的问题
分区配置 (ptab.json) img 属性介绍: img 属性指定分区存放的 image 名称,指定的 image 名称必须是当前工程生成的 binary 。 如果 binary 有多个文件,则以 proj_name:binary_name 格式指定文件名, proj_name 为工程 名&…...
MySQL 知识小结(一)
一、my.cnf配置详解 我们知道安装MySQL有两种方式来安装咱们的MySQL数据库,分别是二进制安装编译数据库或者使用三方yum来进行安装,第三方yum的安装相对于二进制压缩包的安装更快捷,但是文件存放起来数据比较冗余,用二进制能够更好管理咱们M…...
力扣热题100 k个一组反转链表题解
题目: 代码: func reverseKGroup(head *ListNode, k int) *ListNode {cur : headfor i : 0; i < k; i {if cur nil {return head}cur cur.Next}newHead : reverse(head, cur)head.Next reverseKGroup(cur, k)return newHead }func reverse(start, end *ListNode) *ListN…...
(一)单例模式
一、前言 单例模式属于六大创建型模式,即在软件设计过程中,主要关注创建对象的结果,并不关心创建对象的过程及细节。创建型设计模式将类对象的实例化过程进行抽象化接口设计,从而隐藏了类对象的实例是如何被创建的,封装了软件系统使用的具体对象类型。 六大创建型模式包括…...
c++第七天 继承与派生2
这一篇文章主要内容是 派生类构造函数与析构函数 在派生类中重写基类成员 以及多继承 第一部分:派生类构造函数与析构函数 当创建一个派生类对象时,基类成员是如何初始化的? 1.当派生类对象创建的时候,基类成员的初始化顺序 …...
tomcat入门
1 tomcat 是什么 apache开发的web服务器可以为java web程序提供运行环境tomcat是一款高效,稳定,易于使用的web服务器tomcathttp服务器Servlet服务器 2 tomcat 目录介绍 -bin #存放tomcat的脚本 -conf #存放tomcat的配置文件 ---catalina.policy #to…...
苹果AI眼镜:从“工具”到“社交姿态”的范式革命——重新定义AI交互入口的未来机会
在2025年的AI硬件浪潮中,苹果AI眼镜(Apple Glasses)正在引发一场关于“人机交互形态”的深度思考。它并非简单地替代AirPods或Apple Watch,而是开辟了一个全新的、日常可接受的AI入口。其核心价值不在于功能的堆叠,而在于如何通过形态设计打破社交壁垒,成为用户“全天佩戴…...
