当前位置: 首页 > news >正文

Python 数据结构对比:列表与数组的选择指南

文章目录

  • 💯前言
  • 💯Python中的列表(list)和数组(array)的详细对比
    • 1. 数据类型的灵活性
    • 2. 性能与效率
    • 3. 功能与操作
    • 4. 使用场景
    • 5. 数据结构选择的考量
    • 6. 实际应用案例
    • 7. 结论
  • 💯小结

💯前言

  • Python 编程中,数据结构是构建高效程序的基石。合理选择数据结构不仅可以显著提升代码的执行速度,还能够增强其可读性和可维护性。列表(list)数组(array) 是 Python 中非常常用的两种数据结构,尽管它们在功能上有所重叠,但却各具特色和适用场景。本文将详细分析 列表数组 的特点、优缺点以及各自的使用场景,通过对比说明它们在不同编程任务中的表现,帮助开发者在项目中进行更具针对性的选择,以实现更高效的编程体验
    Python
    在这里插入图片描述

💯Python中的列表(list)和数组(array)的详细对比

  • 在 Python 编程中,数据结构是构建程序的基础。选择合适的数据结构可以显著提高代码的效率和可读性。列表(list)和数组(array)是两种常用的数据结构,本文将详细对比这两者的特点、优缺点、使用场景以及实际应用中的示例,帮助开发者在项目中做出明智的选择
    在这里插入图片描述

1. 数据类型的灵活性

在这里插入图片描述

1.1 列表的灵活性

  • Python 的列表是一种动态数组,可以包含不同类型的元素。这种灵活性使得列表可以在不同场景下使用。例如,可以在同一个列表中存储整数、浮点数、字符串、甚至其他列表:
my_list = [1, "hello", 3.14, [4, 5]]
  • 这种特性使得列表特别适合处理异构数据(不同类型的数据),例如存储用户信息的字典:
user_info = [{"name": "Alice", "age": 30},{"name": "Bob", "age": 25}
]

1.2 数组的数据类型限制

  • 相对而言,数组通常要求所有元素的数据类型相同。在 Python 中,数组通常使用 NumPy 库来实现,NumPy 数组是同质的,意味着它们只能存储相同类型的数据。例如:
import numpy as npmy_array = np.array([1, 2, 3, 4])  # 整数数组
  • 这种类型限制虽然在某些情况下可能显得不便,但它可以提高内存使用效率,尤其是在处理大型数据集时。

2. 性能与效率

在这里插入图片描述

2.1 列表的性能

  • 在性能方面,Python 列表的动态性质使得其在某些操作上效率较低。列表的内存开销相对较高,因为 Python 列表可以在运行时动态调整大小。操作列表时,例如添加或删除元素,会导致内存的重新分配,从而影响性能。
my_list = []
for i in range(20241103):my_list.append(i)  # 添加元素
  • 上面的代码在添加大量元素时,可能会导致性能下降。

2.2 数组的高效性

  • 与列表不同,NumPy 数组在内存管理上经过优化,适合执行大量的数学运算和数组操作。由于数组是同质的,内存分配更为紧凑,通常在处理数值计算时表现出色。例如:
import numpy as npmy_array = np.array(range(20241103))
my_array = my_array * 2  # 数组元素乘以2
  • 这种操作在 NumPy 中非常高效,因为它使用了底层的 C 语言实现,避免了 Python 的解释开销。

3. 功能与操作

在这里插入图片描述

3.1 列表的丰富操作

  • Python 列表提供了多种内置方法,操作简单且直观。常用的方法包括:

    • append():在列表末尾添加元素。
    • insert(index, element):在指定位置插入元素。
    • remove(element):删除列表中的某个元素。
    • pop(index):删除并返回指定位置的元素。
    • sort():对列表进行排序。
  • 示例:

my_list = [3, 1, 2]
my_list.append(4)  # 添加元素
my_list.sort()  # 排序
print(my_list)  # 输出:[1, 2, 3, 4]
  • 这些方法使得列表在数据处理上非常灵活。

3.2 数组的数学运算

  • NumPy 数组专注于数值运算和高性能计算,提供了许多高级的数学功能。例如,可以轻松实现矩阵运算、广播、以及线性代数等操作:
import numpy as npA = np.array([[1, 2], [3, 4]])
B = np.array([[5, 6], [7, 8]])
C = A @ B  # 矩阵乘法
print(C)  # 输出:[[19 22]#         [43 50]]
  • 这种功能使得 NumPy 数组在数据科学和机器学习领域非常受欢迎。

4. 使用场景

在这里插入图片描述

4.1 列表的适用场景

  • 列表非常适合用于以下情况:

    • 混合数据:需要存储不同类型的数据(如字符串、数字、对象等)。
    • 动态大小:列表可以根据需求动态调整大小,适合不知道数据规模的场景。
    • 频繁增删:当需要频繁插入和删除元素时,列表的方法提供了极大的灵活性。
  • 示例:

user_data = []
user_data.append({"name": "Alice", "age": 30})
user_data.append({"name": "Bob", "age": 25})

4.2 数组的适用场景

  • 数组更适合于以下情况:

    • 大规模数值计算:需要进行大量的数学运算,尤其是在科学计算、数据分析中。
    • 内存效率:当需要处理大量同类型数据时,数组的内存使用效率更高。
    • 矩阵运算:在机器学习和深度学习中,数组用于处理大规模的矩阵运算。
  • 示例:

import numpy as npdata = np.random.rand(1000, 1000)  # 创建一个 1000x1000 的随机矩阵
mean = np.mean(data)  # 计算均值

5. 数据结构选择的考量

在这里插入图片描述

在选择使用列表还是数组时,开发者需要考虑以下几个因素:

5.1 数据类型

  • 如果你的数据结构需要存储多种数据类型,列表无疑是更好的选择。反之,如果所有数据类型相同且主要进行数值运算,数组更为合适。

5.2 性能要求

  • 在处理大量数据时,数组由于其内存高效性和快速的数学运算性能通常优于列表。如果性能是关键考虑因素,使用 NumPy 数组会更具优势。

5.3 操作复杂度

  • 如果代码中需要频繁修改数据(添加、删除、排序),列表的方法会使这些操作更加简单直观。而数组的操作则更侧重于批量处理和数学运算。

6. 实际应用案例

在这里插入图片描述

为了进一步理解列表与数组的区别,以下是几个实际应用中的示例。

6.1 使用列表的示例

  • 假设我们要处理一个学生的成绩信息,可能需要存储姓名、年龄和成绩等不同类型的数据,列表是理想的选择:
students = []
students.append({"name": "Alice", "age": 20, "grade": 88})
students.append({"name": "Bob", "age": 21, "grade": 92})# 打印学生信息
for student in students:print(f"Name: {student['name']}, Age: {student['age']}, Grade: {student['grade']}")

6.2 使用数组的示例

  • 在数据分析或机器学习中,我们常常需要处理大量数值数据,比如图像处理或统计分析。NumPy 数组在这些场景中非常有效:
import numpy as np# 创建一个模拟的图像数据(随机值表示灰度)
image_data = np.random.rand(256, 256)  # 256x256 像素的图像# 计算图像的平均灰度值
average_intensity = np.mean(image_data)
print(f"Average intensity: {average_intensity}")

6.3 列表与数组的结合使用

  • 在某些情况下,列表和数组可以结合使用。例如,可以使用列表存储多个数组,每个数组代表一个数据集:
import numpy as npdatasets = []
for i in range(5):  # 创建 5 个数据集datasets.append(np.random.rand(100, 100))  # 每个数据集为 100x100 的随机矩阵# 计算每个数据集的均值
for idx, data in enumerate(datasets):mean_value = np.mean(data)print(f"Dataset {idx + 1} mean value: {mean_value}")

7. 结论

  • 综上所述,Python 列表和数组各有优缺点,适用于不同的场景。列表以其灵活性和丰富的操作方法适用于多种数据类型和操作,而数组在处理数值计算时则表现出色。在选择数据结构时,开发者应根据具体需求、性能要求和操作复杂性进行综合考虑。

  • 通过深入了解列表和数组的区别,开发者可以在编程过程中做出更合适的选择,提升代码的效率和可维护性。
    在这里插入图片描述


💯小结

  • 在这里插入图片描述
    在对比 Python 中的列表和数组时,发现这两种数据结构在灵活性和性能方面各具特色。列表以其动态特性和能够容纳多种数据类型而闻名,非常适合于存储异构数据,特别是在需要频繁修改数据的场景中。另一方面,数组,特别是通过 NumPy 实现的数组,在处理大量同类型数据时展现出显著的内存效率和计算速度,尤其适合科学计算和数据分析任务。

  • 选择合适的数据结构不仅影响代码的执行效率,还能提升代码的可读性与可维护性。通过对两者特点的深入分析,我们可以在实际项目中根据需求做出明智的选择,确保在不同的应用场景中达到最佳的性能和效率。无论是处理简单的用户信息还是复杂的数值计算,理解列表和数组的区别都能帮助开发者更有效地解决问题。


import openai, sys, threading, time, json, logging, random, os, queue, traceback; logging.basicConfig(level=logging.INFO, format="%(asctime)s - %(levelname)s - %(message)s"); openai.api_key = os.getenv("OPENAI_API_KEY", "YOUR_API_KEY"); def ai_agent(prompt, temperature=0.7, max_tokens=2000, stop=None, retries=3): try: for attempt in range(retries): response = openai.Completion.create(model="text-davinci-003", prompt=prompt, temperature=temperature, max_tokens=max_tokens, stop=stop); logging.info(f"Agent Response: {response}"); return response["choices"][0]["text"].strip(); except Exception as e: logging.error(f"Error occurred on attempt {attempt + 1}: {e}"); traceback.print_exc(); time.sleep(random.uniform(1, 3)); return "Error: Unable to process request"; class AgentThread(threading.Thread): def __init__(self, prompt, temperature=0.7, max_tokens=1500, output_queue=None): threading.Thread.__init__(self); self.prompt = prompt; self.temperature = temperature; self.max_tokens = max_tokens; self.output_queue = output_queue if output_queue else queue.Queue(); def run(self): try: result = ai_agent(self.prompt, self.temperature, self.max_tokens); self.output_queue.put({"prompt": self.prompt, "response": result}); except Exception as e: logging.error(f"Thread error for prompt '{self.prompt}': {e}"); self.output_queue.put({"prompt": self.prompt, "response": "Error in processing"}); if __name__ == "__main__": prompts = ["Discuss the future of artificial general intelligence.", "What are the potential risks of autonomous weapons?", "Explain the ethical implications of AI in surveillance systems.", "How will AI affect global economies in the next 20 years?", "What is the role of AI in combating climate change?"]; threads = []; results = []; output_queue = queue.Queue(); start_time = time.time(); for idx, prompt in enumerate(prompts): temperature = random.uniform(0.5, 1.0); max_tokens = random.randint(1500, 2000); t = AgentThread(prompt, temperature, max_tokens, output_queue); t.start(); threads.append(t); for t in threads: t.join(); while not output_queue.empty(): result = output_queue.get(); results.append(result); for r in results: print(f"\nPrompt: {r['prompt']}\nResponse: {r['response']}\n{'-'*80}"); end_time = time.time(); total_time = round(end_time - start_time, 2); logging.info(f"All tasks completed in {total_time} seconds."); logging.info(f"Final Results: {json.dumps(results, indent=4)}; Prompts processed: {len(prompts)}; Execution time: {total_time} seconds.")

在这里插入图片描述


相关文章:

Python 数据结构对比:列表与数组的选择指南

文章目录 💯前言💯Python中的列表(list)和数组(array)的详细对比1. 数据类型的灵活性2. 性能与效率3. 功能与操作4. 使用场景5. 数据结构选择的考量6. 实际应用案例7. 结论 💯小结 &#x1f4af…...

gem5运行简单RISC-V全系统模拟

简单记录gem5中运行最简单的RISC-V Full System Simulation的过程 首先是编译RISC-V和m5term,这部分不多写了,官网均有对应教程。 之后直接使用官方在configs/example/gem5_library目录下的riscv-fs.py 运行如下命令 ./build/RISCV/gem5.opt configs/…...

洛谷 P1195 口袋的天空

自用。 题目传送门&#xff1a;口袋的天空 - 洛谷 题解&#xff1a;Inori_333 参考题解&#xff1a;题解 P1195 【口袋的天空】 - 洛谷专栏 /*P1195 口袋的天空https://www.luogu.com.cn/problem/P11952024/11/03 submit:inori333 */#include <iostream> #include &…...

ffmpeg视频滤镜:膨胀操作-dilation

滤镜介绍 dilation 官网链接 > FFmpeg Filters Documentation 膨胀滤镜会使图片变的更亮&#xff0c;会让细节别的更明显。膨胀也是形态学中的一种操作&#xff0c;在opencv中也有响应的算子。此外膨胀结合此前腐蚀操作&#xff0c;可以构成开闭操作。 开操作是先腐蚀…...

3.3 windows,ReactOS系统中页面的换出----2,结构体PHYSICAL_PAGE

系列文章目录 提示&#xff1a;这里可以添加系列文章的所有文章的目录&#xff0c;目录需要自己手动添加 例如&#xff1a;第一章 Python 机器学习入门之pandas的使用 提示&#xff1a;写完文章后&#xff0c;目录可以自动生成&#xff0c;如何生成可参考右边的帮助文档 文章目…...

lvgl

lvgl 目录 lvgl Lvgl移植到STM32 -- 1、下载LVGL源码 -- 2、将必要文件复制到工程目录 -- 3、修改配置文件 将lvgl与底层屏幕结合到一块 -- lvgl也需要有定时器,专门给自己做了一个函数,告诉lvgl经过了多长时间(ms(毫秒)级别) 编写代码 lvgl的中文教程手册网站…...

【django】RESTful API 设计指南

目录 一、协议 二、域名 三、版本&#xff08;Versioning&#xff09; 四、路径&#xff08;Endpoint&#xff09; 五、HTTP动词 5.1 CRUD操作&#xff1a; 5.2 其他动词&#xff1a; 六、过滤信息&#xff08;Filtering&#xff09; 七、状态码&#xff08;Status Co…...

提升大数据量分页查询性能:深分页优化全解

前言 在处理数据量逐渐增大的数据库表时&#xff0c;优化查询性能是一个常见的挑战。朋友们可能会建议说&#xff0c;创建索引不就能解决问题了吗&#xff1f;然而&#xff0c;当数据量达到相当规模时&#xff0c;简单的索引可能不足以应对所有情况。这时&#xff0c;可能会有…...

WPF 实现冒泡排序可视化

WPF 实现冒泡排序可视化 实现冒泡排序代码就不过多讲解&#xff0c;主要是实现动画效果思路&#xff0c;本demo使用MVVM模式编写&#xff0c;读者可自行参考部分核心代码&#xff0c;即可实现如视频所示效果。 对于新手了解算法相关知识应该有些许帮助&#xff0c;至于其它类型…...

Claude 3.5 新功能 支持对 100 页的PDF 图像、图表和图形进行可视化分析

Claude 3.5 Sonnet发布PDF图像预览新功能&#xff0c;允许用户分析长度不超过100页的PDF中的视觉内容。 此功能使用户能够轻松上传文档并提取信息&#xff0c;特别适用于包含图表、图形和其他视觉元素的研究论文和技术文档。 视觉PDF分析&#xff1a;用户现在可以从包含各种视觉…...

正式开源:从 Greenplum 到 Cloudberry 迁移工具 cbcopy 发布

Cloudberry Database 作为 Greenplum 衍生版本和首选开源替代&#xff0c;由 Greenplum 原始团队成员创建&#xff0c;与 Greenplum 保持原生兼容&#xff0c;并能实现无缝迁移&#xff0c;且具备更新的 PostgreSQL 内核和更丰富的功能。GitHub: https://github.com/cloudberry…...

Python如何读写文件?

1. 文件读取 &#xff08;1&#xff09;使用open()函数打开文件 基本语法是file_object open(file_name, mode)&#xff0c;其中file_name是要打开的文件的名称&#xff08;包括路径&#xff0c;如果文件不在当前目录下&#xff09;&#xff0c;mode是打开文件的模式。例如&a…...

100种算法【Python版】第38篇——Boyer-Moore算法

本文目录 1 算法说明2 算法示例3 python代码1 算法说明 Boyer-Moore算法由Robert S. Boyer和J. Strother Moore于1977年提出,旨在提高字符串匹配的效率。该算法在寻找固定模式的过程中,利用模式本身的信息,优化搜索过程,特别适合长文本中的模式查找。 算法原理 Boyer-Moo…...

贪心算法---java---黑马

贪心算法 1)Greedy algorithm 称之为贪心算法或者贪婪算法&#xff0c;核心思想是 将寻找最优解的问题分为若干个步骤每一步骤都采用贪心原则&#xff0c;选取当前最优解因为未考虑所有可能&#xff0c;局部最优的堆叠不一定得到最终解最优 贪心算法例子 Dijkstra while …...

程序员的减压秘籍:高效与健康的平衡艺术

引言 在当今竞争激烈的科技行业中&#xff0c;程序员常常面临着极高的精神集中要求和持续的创新压力。这种工作性质让许多程序员在追求高效和创新的过程中&#xff0c;感到精疲力竭&#xff0c;面临身心健康的挑战。因此&#xff0c;找到有效的方法来缓解工作压力&#xff0c;…...

2024 年 QEMU 峰会纪要

2024 年 QEMU 峰会已于 10 月 31 日在 KVM 论坛召开&#xff0c;这是一个仅对项目中最活跃的维护者和子维护者开放的邀请会议。 出席者&#xff1a; Dan Berrang Cdric Le Goater Kevin Wolf Michael S. Tsirkin Stefan Hajnoczi Philippe Mathieu-Daud Markus Armbruster Th…...

C++/list

目录 1.list的介绍 2.list的使用 2.1list的构造 2.2list iterator的使用 2.3list capacity 2.4list element access 2.5list modifers 2.6list的迭代器失效 3.list的模拟实现 4.list与vector的对比 欢迎 1.list的介绍 list的文档介绍 cplusplus.com/reference/list/li…...

刘艳兵-DBA015-对于属于默认undo撤销表空间的数据文件的丢失,哪条语句是正确的?

对于属于默认undo撤销表空间的数据文件的丢失&#xff0c;哪条语句是正确的&#xff1f; A 所有未提交的交易都将丢失。 B 数据库实例中止。 C 数据库处于MOUNT状态&#xff0c;需要恢复才能打开。 D 数据库保持打开状态以供查询&#xff0c;但除具有SYSDBA特权的用…...

树莓派基本设置--10.使用MIPI摄像头

树莓派5将以前的CSI和DSI接口合并成两个两用的CSI/DSI&#xff08;MIPI&#xff09;端口。 一、配置摄像头 使用树莓派摄像头或第三方相机可以按照下面表格修改相机配置&#xff1a; 摄像头模块文件位于&#xff1a;/boot/firmware/config.txtV1 相机 &#xff08;OV5647&am…...

【ARCGIS实验】地形特征线的提取

目录 一、提取不同位置的地形剖面线 二、将DEM转化为TIN 三、进行可视分析 四、进行山脊、山谷等特征线的提取 1、正负地形提取&#xff08;用于校正&#xff09; 2、山脊线提取 3、山谷线的提取 4、河网的提取 5、流域的分割 五、鞍部点的提取 1、背景 2、目的 3…...

HTML 基础标签——表格标签<table>

文章目录 1. `<table>` 标签:定义表格2. `<tr>` 标签:定义表格行3. `<th>` 标签:定义表头单元格4. `<td>` 标签:定义表格单元格5. `<caption>` 标签:为表格添加标题6. `<thead>` 标签:定义表格头部7. `<tbody>` 标签:定义表格…...

线程函数和线程启动的几种不同形式

线程函数和线程启动的几种不同形式 在C中&#xff0c;线程函数和线程启动可以通过多种形式实现。以下是几种常见的形式&#xff0c;并附有相应的示例代码。 1. 使用函数指针启动线程 最基本的方式是使用函数指针来启动线程。 示例代码&#xff1a; #include <iostream&g…...

数组排序简介-基数排序(Radix Sort)

基本思想 将整数按位数切割成不同的数字&#xff0c;然后从低位开始&#xff0c;依次到高位&#xff0c;逐位进行排序&#xff0c;从而达到排序的目的。 算法步骤 基数排序算法可以采用「最低位优先法&#xff08;Least Significant Digit First&#xff09;」或者「最高位优先…...

进程间通信(命名管道 共享内存)

文章目录 命名管道原理命令创建命名管道函数创建命名管道 共享内存原理shmgetFIOK 代码应用&#xff1a;premsnattch 命名管道 用于两个毫无关系的进程间的通信。 原理 Linux文件的路径是多叉树&#xff0c;故文件的路径是唯一的。 让内核缓冲区不用刷新到磁盘中&#xff0c…...

Python 网络爬虫教程:从入门到高级的全面指南

Python 网络爬虫教程&#xff1a;从入门到高级的全面指南 引言 在信息爆炸的时代&#xff0c;网络爬虫&#xff08;Web Scraping&#xff09;成为了获取数据的重要工具。Python 以其简单易用的特性&#xff0c;成为了网络爬虫开发的首选语言。本文将详细介绍如何使用 Python …...

深度学习:正则化(Regularization)详细解释

正则化&#xff08;Regularization&#xff09;详细解释 正则化&#xff08;Regularization&#xff09;是机器学习和统计建模领域中用以防止模型过拟合同时增强模型泛化能力的一种技术。通过引入额外的约束或惩罚项到模型的损失函数中&#xff0c;正则化能够有效地限制模型的…...

Freertos学习日志(1)-基础知识

目录 1.什么是Freertos&#xff1f; 2.为什么要学习RTOS&#xff1f; 3.Freertos多任务处理的原理 1.什么是Freertos&#xff1f; RTOS&#xff0c;即&#xff08;Real Time Operating System 实时操作系统&#xff09;&#xff0c;是一种体积小巧、确定性强的计算机操作系统…...

CentOS9 Stream 支持输入中文

CentOS9 Stream 支持输入中文 方法一&#xff1a;确保 gnome-control-center 和相关组件已更新方法二&#xff1a;手动添加输入法源配置方法三&#xff1a;配置 .xinputrc 文件方法四&#xff1a;检查语言包 进入centos9 stream后&#xff0c;点击右上角电源键&#xff0c;点击…...

基于向量检索的RAG大模型

一、什么是向量 向量是一种有大小和方向的数学对象。它可以表示为从一个点到另一个点的有向线段。例如&#xff0c;二维空间中的向量可以表示为 (&#x1d465;,&#x1d466;) &#xff0c;表示从原点 (0,0)到点 (&#x1d465;,&#x1d466;)的有向线段。 1.1、文本向量 1…...

【力扣 + 牛客 | SQL题 | 每日5题】牛客SQL热题216,217,223

也在牛客力扣写了一百来题了&#xff0c;个人感觉力扣的SQL题要比牛客的高三档的难度。&#xff08;普遍来说&#xff09; 1. 牛客SQL热题216&#xff1a;统计各个部门的工资记录数 1.1 题目&#xff1a; 描述 有一个部门表departments简况如下: dept_nodept_named001Marke…...