opencv - py_imgproc - py_grabcut GrabCut 算法提取前景
文章目录
- 使用 GrabCut 算法进行交互式前景提取
- 目标
- 理论
- 演示
使用 GrabCut 算法进行交互式前景提取
目标
在本章中
- 我们将了解 GrabCut 算法如何提取图像中的前景
- 我们将为此创建一个交互式应用程序。
理论
GrabCut 算法由英国剑桥微软研究院的 Carsten Rother、Vladimir Kolmogorov 和 Andrew Blake 设计。在他们的论文 “GrabCut”:使用迭代图切割进行交互式前景提取 中。需要一种以最少的用户交互进行前景提取的算法,结果就是 GrabCut。
从用户的角度来看它是如何工作的?首先,用户在前景区域周围绘制一个矩形(前景区域应完全在矩形内)。然后算法迭代地对其进行分割以获得最佳结果。完成。但在某些情况下,分割效果并不好,例如,它可能将某些前景区域标记为背景,反之亦然。在这种情况下,用户需要进行精细的修饰。只需在存在错误结果的图像上进行一些描边即可。描边基本上表示“嘿,这个区域应该是前景,你将其标记为背景,在下一次迭代中对其进行更正”*或将其相反标记为背景。然后在下一次迭代中,您会得到更好的结果。
参见下图。第一个球员和足球被包裹在一个蓝色矩形中。然后用白色描边(表示前景)和黑色描边(表示背景)进行一些最后的修饰。我们得到了一个不错的结果。

那么背景会发生什么?
- 用户输入矩形。此矩形之外的所有内容都将被视为确定的背景(这就是之前提到您的矩形应包含所有对象的原因)。矩形内的所有内容都是未知的。同样,任何指定前景和背景的用户输入都被视为硬标记,这意味着它们不会在此过程中发生变化。
- 计算机根据我们提供的数据进行初始标记。它标记前景和背景像素(或硬标记)
- 现在使用高斯混合模型 (GMM) 来建模前景和背景。
- 根据我们提供的数据,GMM 学习并创建新的像素分布。也就是说,未知像素根据其与其他硬标记像素在颜色统计方面的关系被标记为可能的前景或可能的背景(这就像聚类)。
- 根据此像素分布构建图形。图中的节点是像素。添加了另外两个节点,源节点和接收器节点。每个前景像素都连接到源节点,每个背景像素都连接到接收器节点。
- 将像素连接到源节点/端节点的边的权重由像素为前景/背景的概率定义。像素之间的权重由边缘信息或像素相似性定义。如果像素颜色差异很大,则它们之间的边缘将获得较低的权重。
- 然后使用最小切割算法对图形进行分割。它将图形切成两个分离的源节点和接收器节点,具有最小成本函数。成本函数是所有被切割边的权重之和。切割后,所有连接到源节点的像素都变为前景,而连接到接收器节点的像素都变为背景。
- 该过程持续进行,直到分类收敛。
如下图所示(图片来源:http://www.cs.ru.ac.za/research/g02m1682/)

演示
现在我们使用 OpenCV 进行 grabcut 算法。OpenCV 有函数 cv.grabCut() 用于此目的。我们
首先将看到它的参数:
- img - 输入图像
- mask - 这是一个掩码图像,我们指定哪些区域是背景、前景或可能的背景/前景等。它通过以下标志完成,cv.GC_BGD、cv.GC_FGD、cv.GC_PR_BGD、cv.GC_PR_FGD,或者简单地将 0、1、2、3 传递给图像。
- rect - 它是包含前景对象的矩形的坐标,格式为 (x,y,w,h)
- bdgModel、fgdModel - 这些是算法内部使用的数组。您只需创建两个大小为 (1,65) 的 np.float64 类型零数组。
- iterCount - 算法应运行的迭代次数。
- mode - 它应该是 cv.GC_INIT_WITH_RECT 或 cv.GC_INIT_WITH_MASK 或两者结合
决定我们绘制的是矩形还是最终的修饰笔触。
首先让我们看看矩形模式。我们加载图像,创建一个类似的遮罩图像。我们创建 fgdModel 和 bgdModel。我们给出矩形参数。这一切都很简单。让算法运行 5 次迭代。模式应该是cv.GC_INIT_WITH_RECT,因为我们使用的是矩形。然后运行 grabcut。它会修改遮罩图像。在新的遮罩图像中,像素将用四个标志标记,表示如上所述的背景/前景。因此,我们修改了掩码,将所有 0 像素和 2 像素都设置为 0(即背景),将所有 1 像素和 3 像素都设置为 1(即前景像素)。现在我们的最终掩码已准备就绪。只需将其与输入图像相乘即可获得分割后的图像。
import numpy as np
import cv2 as cv
from matplotlib import pyplot as pltimg = cv.imread('messi5.jpg')
mask = np.zeros(img.shape[:2],np.uint8)bgdModel = np.zeros((1,65),np.float64)
fgdModel = np.zeros((1,65),np.float64)rect = (50,50,450,290)
cv.grabCut(img,mask,rect,bgdModel,fgdModel,5,cv.GC_INIT_WITH_RECT)mask2 = np.where((mask==2)|(mask==0),0,1).astype('uint8')
img = img*mask2[:,:,np.newaxis]plt.imshow(img),plt.colorbar(),plt.show()
请参阅以下结果:

哎呀,梅西的头发不见了。*谁会喜欢没有头发的梅西?*我们需要把它带回来。所以我们将用 1 像素(确定的前景)进行精细修饰。同时,一些我们不想要的地面部分出现在图片中,还有一些徽标。我们需要移除它们。我们在那里进行一些 0 像素修饰(确定的背景)。所以我们修改了前面案例中得到的蒙版,就像我们现在所说的那样。
我实际上做的是,我在绘画应用程序中打开输入图像,并在图像上添加了另一个图层。使用绘画中的画笔工具,我在这个新图层上用白色标记错过的前景(头发、鞋子、球等),用黑色标记不需要的背景(如徽标、地面等)。然后用灰色填充剩余的背景。然后在 OpenCV 中加载该蒙版图像,使用新添加的蒙版图像中的相应值编辑我们获得的原始蒙版图像。检查下面的代码:
# newmask is the mask image I manually labelled
newmask = cv.imread('newmask.png',0)# wherever it is marked white (sure foreground), change mask=1
# wherever it is marked black (sure background), change mask=0
mask[newmask == 0] = 0
mask[newmask == 255] = 1mask, bgdModel, fgdModel = cv.grabCut(img,mask,None,bgdModel,fgdModel,5,cv.GC_INIT_WITH_MASK)mask = np.where((mask==2)|(mask==0),0,1).astype('uint8')
img = img*mask[:,:,np.newaxis]
plt.imshow(img),plt.colorbar(),plt.show()
请参阅以下结果:

就是这样。在这里,您可以直接进入掩码模式,而不是在矩形模式下初始化。只需用 2 像素或 3 像素(可能的背景/前景)标记掩码图像中的矩形区域。然后用 1 像素标记我们的 sure_foreground,就像我们在第二个示例中所做的那样。然后直接在掩码模式下应用 grabCut函数。
相关文章:
opencv - py_imgproc - py_grabcut GrabCut 算法提取前景
文章目录 使用 GrabCut 算法进行交互式前景提取目标理论演示 使用 GrabCut 算法进行交互式前景提取 目标 在本章中 我们将了解 GrabCut 算法如何提取图像中的前景我们将为此创建一个交互式应用程序。 理论 GrabCut 算法由英国剑桥微软研究院的 Carsten Rother、Vladimir K…...
ChatGPT多模态命名实体识别
ChatGPT多模态命名实体识别 ChatGPT辅助细化知识增强!一、研究背景二、模型结构和代码任务流程第一阶段:辅助精炼知识启发式生成第二阶段:基于…...
04-Dubbo的通信协议
04-Dubbo的通信协议 Dubbo 支持的通信协议 Dubbo 框架提供了自定义的高性能 RPC 通信协议: 基于 TCP 的 Dubbo2 协议 基于 HTTP/2 的 Triple 协议 Dubbo 框架是不和任何通信协议绑定的,对通信协议的支持非常灵活,支持任意的第三方协议&#x…...
开源数据库 - mysql - innodb源码阅读 - 线程启动
线程启动源码 /** Start up the InnoDB service threads which are independent of DDL recovery.*/void srv_start_threads() {if (!srv_read_only_mode) {/* Before 8.0, it was master thread that was doing periodicalcheckpoints (every 7s). Since 8.0, it is the log …...
在美团外卖上抢券 Python来实现
在美团外卖上抢券的 Python 实现 在如今的互联网时代,自动化脚本已经成为了许多用户生活中不可或缺的工具。尤其是在购物、抢券等场景中,自动化脚本能够帮助我们节省大量的时间和精力。今天,我们将一起探索如何使用 Python 编写一个简单的脚…...
【ONLYOFFICE 文档 8.2 版本深度测评】功能革新与用户体验的双重飞跃
引言 在数字化办公的浪潮中,ONLYOFFICE 文档以其强大的在线协作功能和全面的办公套件解决方案,赢得了全球用户的青睐。随着 8.2 版本的发布,ONLYOFFICE 再次证明了其在办公软件领域的创新能力和技术实力。 一.协作编辑 PDF:团队合…...
npm入门教程18:npm发布npm包
一、准备工作 注册npm账号: 前往npm官网注册一个账号。注册过程中需要填写个人信息,并完成邮箱验证。 安装Node.js和npm: 确保你的计算机上已安装Node.js和npm。Node.js的安装包中通常包含了npm。你可以通过运行node -v和npm -v命令来检查它…...
VueSSR详解 VueServerRenderer Nutx
SSR Vue中的SSR(Server-Side Rendering,服务器端渲染)是一种将页面的渲染工作从客户端转移到服务器端的技术。以下是对Vue中SSR的详细解释: 一、SSR的工作原理 在传统的客户端渲染(CSR)中,页面的…...
构建您自己的 RAG 应用程序:使用 Ollama、Python 和 ChromaDB 在本地设置 LLM 的分步指南
在数据隐私至关重要的时代,建立自己的本地语言模型 (LLM) 为公司和个人都提供了至关重要的解决方案。本教程旨在指导您完成使用 Ollama、Python 3 和 ChromaDB 创建自定义聊天机器人的过程,所有这些机器人都托管在您的系统本地。以…...
谷歌浏览器安装axure插件
1.在生成静态原型页面的路径下,找到resources\chrome\axure-chrome-extension.crx,这就是需要的插件了。 2.将axure-chrome-extension.crx重命名成axure-chrome-extension.zip然后解压到指定的文件夹(这个文件夹不能删除, 例如解压到了扩展程…...
Java唯一键实现方案
数据唯一性 1、生成UUID1.1 代码中实现1.2 数据库中实现优点缺点 2、数据库递增主键优点 3、数据库递增序列3.1 创建序列3.2 使用序列优点缺点 在Java项目开发中,对数据的唯一性要求,业务数据入库的时候保持单表只有一条记录,因此对记录中要求…...
opencv - py_imgproc - py_canny Canny边缘检测
文章目录 Canny 边缘检测目标理论OpenCV 中的 Canny 边缘检测其他资源 Canny 边缘检测 目标 在本章中,我们将学习 Canny 边缘检测的概念用于该目的的 OpenCV 函数:cv.Canny() 理论 Canny 边缘检测是一种流行的边缘检测算法。它由 John F. Canny 于1…...
Spring Boot 创建项目详细介绍
上篇文章简单介绍了 Spring Boot(Spring Boot 详细简介!),还没看到的读者,建议看看。 下面,介绍一下如何创建一个 Spring Boot 项目,以及自动生成的目录文件作用。 Maven 构建项目 访问 http…...
70B的模型需要多少张A10的卡可以部署成功,如果使用vLLM
部署一个 70B 的模型(如 defog/sqlcoder-70b-alpha)通常需要考虑多个因素,包括模型的内存需求和你的 GPU 配置。 1. 模型内存需求 大约计算,一个 70B 参数的模型在使用 FP16 精度时大约需要 280 GB 的 GPU 内存。对于 A10 GPU&a…...
clickhouse配置用户角色与权限
首先找到user.xml文件,默认在/etc/clickhouse-server路径下 一、配置角色 找到标签定义 <aaaa><readonly>1</readonly><allow_dll>0</allow_dll> </aaaa>其中aaaa为角色名称,readonly为只读权限(0–代表…...
面试题整理 4
总结整理了某公司面试中值得记录的笔试和问到的问题和答案。 目录 PHP传值和传引用区别?什么情况下用传值?什么情况下用传引用? 传值 传引用 区别 选择传值还是传引用时 简述PHP的垃圾回收机制 二维数组排序 什么是CSRF攻击ÿ…...
React基础大全
文章目录 一、React基本介绍1.虚拟DOM优化1.1 原生JS渲染页面1.2 React渲染页面 2.需要提前掌握的JS知识 二、入门1.React基本使用2.创建DOM的两种方式2.1 使用js创建(一般不用)2.2 使用jsx创建 3.React JSX3.1 JSX常见语法规则3.2 for循环渲染数据 4.模…...
51c大模型~合集10
我自己的原文哦~ https://blog.51cto.com/whaosoft/11547799 #Llama 3.1 美国太平洋时间 7 月 23 日,Meta 公司发布了其最新的 AI 模型 Llama 3.1,这是一个里程碑时刻。Llama 3.1 的发布让我们看到了开源 LLM 有与闭源 LLM 一较高下的能力。 Meta 表…...
【已解决】element-plus配置主题色后,sass兼容问题。set-color-mix-level() is...in Dart Sass 3
项目:vue3vite "scripts": {"dev": "vite","build": "vite build","preview": "vite preview"},"dependencies": {"element-plus/icons-vue": "^2.3.1",&quo…...
JavaWeb——Web入门(4/9)-HTTP协议:请求协议(请求行、请求头、请求体、演示 )
目录 请求协议概述 请求行 请求头 请求体 演示 GET POST 请求协议概述 介绍完了 HTTP 协议的概念以及特点之后,接下来介绍 HTTP 当中的请求协议。 请求协议指的就是请求数据的格式。 HTTP 请求协议在整个 Web 通信中起着至关重要的作用。当用户在浏览器…...
第19节 Node.js Express 框架
Express 是一个为Node.js设计的web开发框架,它基于nodejs平台。 Express 简介 Express是一个简洁而灵活的node.js Web应用框架, 提供了一系列强大特性帮助你创建各种Web应用,和丰富的HTTP工具。 使用Express可以快速地搭建一个完整功能的网站。 Expre…...
【Python】 -- 趣味代码 - 小恐龙游戏
文章目录 文章目录 00 小恐龙游戏程序设计框架代码结构和功能游戏流程总结01 小恐龙游戏程序设计02 百度网盘地址00 小恐龙游戏程序设计框架 这段代码是一个基于 Pygame 的简易跑酷游戏的完整实现,玩家控制一个角色(龙)躲避障碍物(仙人掌和乌鸦)。以下是代码的详细介绍:…...
C++实现分布式网络通信框架RPC(3)--rpc调用端
目录 一、前言 二、UserServiceRpc_Stub 三、 CallMethod方法的重写 头文件 实现 四、rpc调用端的调用 实现 五、 google::protobuf::RpcController *controller 头文件 实现 六、总结 一、前言 在前边的文章中,我们已经大致实现了rpc服务端的各项功能代…...
工业安全零事故的智能守护者:一体化AI智能安防平台
前言: 通过AI视觉技术,为船厂提供全面的安全监控解决方案,涵盖交通违规检测、起重机轨道安全、非法入侵检测、盗窃防范、安全规范执行监控等多个方面,能够实现对应负责人反馈机制,并最终实现数据的统计报表。提升船厂…...
ffmpeg(四):滤镜命令
FFmpeg 的滤镜命令是用于音视频处理中的强大工具,可以完成剪裁、缩放、加水印、调色、合成、旋转、模糊、叠加字幕等复杂的操作。其核心语法格式一般如下: ffmpeg -i input.mp4 -vf "滤镜参数" output.mp4或者带音频滤镜: ffmpeg…...
爬虫基础学习day2
# 爬虫设计领域 工商:企查查、天眼查短视频:抖音、快手、西瓜 ---> 飞瓜电商:京东、淘宝、聚美优品、亚马逊 ---> 分析店铺经营决策标题、排名航空:抓取所有航空公司价格 ---> 去哪儿自媒体:采集自媒体数据进…...
大学生职业发展与就业创业指导教学评价
这里是引用 作为软工2203/2204班的学生,我们非常感谢您在《大学生职业发展与就业创业指导》课程中的悉心教导。这门课程对我们即将面临实习和就业的工科学生来说至关重要,而您认真负责的教学态度,让课程的每一部分都充满了实用价值。 尤其让我…...
稳定币的深度剖析与展望
一、引言 在当今数字化浪潮席卷全球的时代,加密货币作为一种新兴的金融现象,正以前所未有的速度改变着我们对传统货币和金融体系的认知。然而,加密货币市场的高度波动性却成为了其广泛应用和普及的一大障碍。在这样的背景下,稳定…...
ABAP设计模式之---“简单设计原则(Simple Design)”
“Simple Design”(简单设计)是软件开发中的一个重要理念,倡导以最简单的方式实现软件功能,以确保代码清晰易懂、易维护,并在项目需求变化时能够快速适应。 其核心目标是避免复杂和过度设计,遵循“让事情保…...
比较数据迁移后MySQL数据库和OceanBase数据仓库中的表
设计一个MySQL数据库和OceanBase数据仓库的表数据比较的详细程序流程,两张表是相同的结构,都有整型主键id字段,需要每次从数据库分批取得2000条数据,用于比较,比较操作的同时可以再取2000条数据,等上一次比较完成之后,开始比较,直到比较完所有的数据。比较操作需要比较…...
