当前位置: 首页 > news >正文

【scikit-learn 1.2版本后】sklearn.datasets中load_boston报错 使用 fetch_openml 函数来加载波士顿房价

ImportError:
load_boston has been removed from scikit-learn since version 1.2.

由于 load_boston 已经在 scikit-learn 1.2 版本中被移除,需要使用 fetch_openml 函数来加载波士顿房价数据集。

# 导入sklearn数据集模块
from sklearn import datasets
# 导入波士顿房价数据集
data_x, data_y = datasets.fetch_openml(name="boston", version=1, as_frame=True, return_X_y=True, parser="pandas")

这段代码的功能是从 OpenML 数据集库中获取名为“boston”的数据集,并将其加载为 Pandas DataFrame 格式。具体步骤如下:

  1. 调用 datasets.fetch_openml 函数。
  2. 指定数据集名称为 “boston”,版本为 1。
  3. 设置 as_frame=True,使数据以 Pandas DataFrame 格式返回。
  4. 设置 return_X_y=True,返回特征数据和目标数据。
  5. 设置 parser=“pandas”,使用 Pandas 解析器。


以下是完整的报错信息,包含了修改的建议:

ImportError:
load_boston has been removed from scikit-learn since version 1.2.

The Boston housing prices dataset has an ethical problem: as investigated in [1], the authors of this dataset engineered a non-invertible variable “B” assuming that racial self-segregation had a positive impact on house prices [2]. Furthermore the goal of the research that led to the creation of this dataset was to study the impact of air quality but it did not give adequate demonstration of the
validity of this assumption.

The scikit-learn maintainers therefore strongly discourage the use of this dataset unless the purpose of the code is to study and educate about ethical issues in data science and machine learning.

In this special case, you can fetch the dataset from the original
source::

import pandas as pd
import numpy as npdata_url = "http://lib.stat.cmu.edu/datasets/boston"
raw_df = pd.read_csv(data_url, sep="\s+", skiprows=22, header=None)
data = np.hstack([raw_df.values[::2, :], raw_df.values[1::2, :2]])
target = raw_df.values[1::2, 2]

Alternative datasets include the California housing dataset and the Ames housing dataset. You can load the datasets as follows::

from sklearn.datasets import fetch_california_housing
housing = fetch_california_housing()

for the California housing dataset and::

from sklearn.datasets import fetch_openml
housing = fetch_openml(name="house_prices", as_frame=True)

for the Ames housing dataset.

[1] M Carlisle.
“Racist data destruction?” https://medium.com/@docintangible/racist-data-destruction-113e3eff54a8

[2] Harrison Jr, David, and Daniel L. Rubinfeld. “Hedonic housing prices and the demand for clean air.” Journal of environmental economics and management 5.1 (1978): 81-102.
https://www.researchgate.net/publication/4974606_Hedonic_housing_prices_and_the_demand_for_clean_air

相关文章:

【scikit-learn 1.2版本后】sklearn.datasets中load_boston报错 使用 fetch_openml 函数来加载波士顿房价

ImportError: load_boston has been removed from scikit-learn since version 1.2. 由于 load_boston 已经在 scikit-learn 1.2 版本中被移除,需要使用 fetch_openml 函数来加载波士顿房价数据集。 # 导入sklearn数据集模块 from sklearn import datasets # 导入波…...

vxe-table v4.8+ 与 v3.10+ 导出 xlsx、支持导出合并、设置样式、宽高、边框、字体、背景、超链接、图片的详细介绍,一篇就够了

Vxe UI vue vxe-table v4.8 与 v3.10 导出 xlsx、支持导出合并、设置样式、宽高、边框、字体、背景、超链接、图片等、所有常用的 Excel 格式都能自定义,使用非常简单,纯前端实现复杂的导出。 安装插件 npm install vxe-pc-ui4.2.39 vxe-table4.8.0 vx…...

江协科技STM32学习- P36 SPI通信外设

🚀write in front🚀 🔎大家好,我是黄桃罐头,希望你看完之后,能对你有所帮助,不足请指正!共同学习交流 🎁欢迎各位→点赞👍 收藏⭐️ 留言📝​…...

【大数据】ClickHouse常见的表引擎及建表语法

ClickHouse 中最强大的表引擎当属 MergeTree (合并树)引擎及该系列(*MergeTree)中的其他引擎。接下来我们就仔细了解下MergeTree 及该系列的其他引擎的使用场景及建表语法。 MergeTree MergeTree 系列的引擎被设计用于插入极大量…...

explain执行计划分析 ref_

这里写目录标题 什么是ExplainExplain命令扩展explain extendedexplain partitions 两点重要提示本文示例使用的数据库表Explain命令(关键字)explain简单示例explain结果列说明【id列】【select_type列】【table列】【type列】 【possible_keys列】【key列】【key_len列】【ref…...

网络学习/复习4传输层

1,0...

Notepad++ 更改字体大小和颜色

前言 在长时间编程或文本编辑过程中,合适的字体大小和颜色可以显著提高工作效率和减少眼睛疲劳。Notepad 提供了丰富的自定义选项,让你可以根据个人喜好调整编辑器的外观。 步骤详解 1. 更改字体大小 打开 Notepad 启动 Notepad 编辑器。 进入设置菜…...

基于SSM+小程序的宿舍管理系统(宿舍1)

👉文末查看项目功能视频演示获取源码sql脚本视频导入教程视频 1、项目介绍 本宿舍管理系统小程序有管理员和学生两个角色。 1、管理员功能有个人中心,公告信息管理,班级管理,学生管理,宿舍信息管理,宿舍…...

【案例分享】TeeChart 如何为人类绩效解决方案提供数据洞察

“过去二十年来,我们一直在使用 Steema Software 产品,尤其是 TeeChart,这是我们软件开发的基础部分。看到 TeeChart 在这段时间里不断发展、改进和增加功能,真是太棒了,这极大地增强了我们的产品。Steema 的客户和技术…...

细谈 Linux 中的多路复用epoll

大家好,我是 V 哥。在 Linux 中,epoll 是一种多路复用机制,用于高效地处理大量文件描述符(file descriptor, FD)事件。与传统的select和poll相比,epoll具有更高的性能和可扩展性,特别是在大规模…...

51c自动驾驶~合集4

我自己的原文哦~ https://blog.51cto.com/whaosoft/12413878 #MCTrack 迈驰&旷视最新MCTrack:KITTI/nuScenes/Waymo三榜单SOTA paper:MCTrack: A Unified 3D Multi-Object Tracking Framework for Autonomous Driving code:https://gi…...

回归预测 | MATLAB实现BO-BiGRU贝叶斯优化双向门控循环单元多输入单输出回归预测

要在MATLAB中实现BO-BiGRU(贝叶斯优化双向门控循环单元)进行多输入单输出回归预测,您需要执行以下步骤: 数据准备:准备您的训练数据和测试数据。 模型构建:构建BO-BiGRU模型,可以使用MATLAB中的…...

2-ARM Linux驱动开发-设备树平台驱动

一、概述 设备树(Device Tree)是一种描述硬件的数据结构,用于将硬件设备的信息传递给操作系统内核。它的主要作用是使内核能够以一种统一、灵活的方式了解硬件平台的细节,包括设备的拓扑结构、资源分配(如内存地址、中断号等)等信…...

C语言函数与递归

函数 函数是指将一组能完成一个功能或多个功能的语句放在一起的代码结构。在C语言程序中,至少会包含一个函数,主函数main()。本章将详细讲解关于函数的相关内容。 1、库函数 ⭕️C语言库函数是指在C语言标准库中预先定义好的函数,这些函数包…...

Linux下的Debugfs

debugfs 1. 简介 类似sysfs、procfs,debugfs 也是一种内存文件系统。不过不同于sysfs一个kobject对应一个文件,procfs和进程相关的特性,debugfs的灵活度很大,可以根据需求对指定的变量进行导出并提供读写接口。debugfs又是一个Li…...

【FFmpeg】调整音频文件的音量

1、调整音量的命令 1)音量调整为当前音量的十倍 ffmpeg -i inputfile -vol 1000 outputfile 2)音量调整为当前音量的一半 ffmpeg -i input.wav -filter:a "volume=0.5" output.wav3)静音 ffmpeg -i input.wav -filter:a "volume=0" output.wav4)…...

mac 打开访达快捷键

一、使用快捷键组合 1. Command N 在当前桌面或应用程序窗口中,按下“Command N”组合键可以快速打开一个新的访达窗口。这就像在 Windows 系统中通过“Ctrl N”打开新的资源管理器窗口一样。 2. Command Tab 切换 如果访达已经打开,只是被其他应…...

Ubuntu学习笔记 - Day2

文章目录 学习目标:学习内容:学习笔记:Linux系统启动过程内核引导运行init运行级别系统初始化建立终端用户登录系统 Ubuntu关机关机流程相关命令 Linux系统目录结构查看目录目录结构 文件基本属性读写权限命令 下载文件的方法安装wget工具下载…...

c++基础12比较/逻辑运算符

比较/逻辑运算符 布尔比较运算符逻辑运算符位运算符&#xff08;也用于逻辑运算&#xff09;1<a<10怎么表达T140399判断是否为两位数代码 布尔 在C中&#xff0c;布尔类型是一种基本数据类型&#xff0c;用于表示逻辑值&#xff0c;即真&#xff08;true&#xff09;或假…...

mac-ubuntu虚拟机(扩容-共享-vmtools)

一、磁盘扩容 使用GParted工具对Linux磁盘空间进行扩展 https://blog.csdn.net/Time_Waxk/article/details/105675468 经过上面的方式后还不够&#xff0c;需要再进行下面的操作 lvextend 用于扩展逻辑卷的大小&#xff0c;-l 选项允许指定大小。resize2fs 用于调整文件系统的…...

Qt/C++开发监控GB28181系统/取流协议/同时支持udp/tcp被动/tcp主动

一、前言说明 在2011版本的gb28181协议中&#xff0c;拉取视频流只要求udp方式&#xff0c;从2016开始要求新增支持tcp被动和tcp主动两种方式&#xff0c;udp理论上会丢包的&#xff0c;所以实际使用过程可能会出现画面花屏的情况&#xff0c;而tcp肯定不丢包&#xff0c;起码…...

Appium+python自动化(十六)- ADB命令

简介 Android 调试桥(adb)是多种用途的工具&#xff0c;该工具可以帮助你你管理设备或模拟器 的状态。 adb ( Android Debug Bridge)是一个通用命令行工具&#xff0c;其允许您与模拟器实例或连接的 Android 设备进行通信。它可为各种设备操作提供便利&#xff0c;如安装和调试…...

DAY 47

三、通道注意力 3.1 通道注意力的定义 # 新增&#xff1a;通道注意力模块&#xff08;SE模块&#xff09; class ChannelAttention(nn.Module):"""通道注意力模块(Squeeze-and-Excitation)"""def __init__(self, in_channels, reduction_rat…...

为什么需要建设工程项目管理?工程项目管理有哪些亮点功能?

在建筑行业&#xff0c;项目管理的重要性不言而喻。随着工程规模的扩大、技术复杂度的提升&#xff0c;传统的管理模式已经难以满足现代工程的需求。过去&#xff0c;许多企业依赖手工记录、口头沟通和分散的信息管理&#xff0c;导致效率低下、成本失控、风险频发。例如&#…...

IoT/HCIP实验-3/LiteOS操作系统内核实验(任务、内存、信号量、CMSIS..)

文章目录 概述HelloWorld 工程C/C配置编译器主配置Makefile脚本烧录器主配置运行结果程序调用栈 任务管理实验实验结果osal 系统适配层osal_task_create 其他实验实验源码内存管理实验互斥锁实验信号量实验 CMISIS接口实验还是得JlINKCMSIS 简介LiteOS->CMSIS任务间消息交互…...

AspectJ 在 Android 中的完整使用指南

一、环境配置&#xff08;Gradle 7.0 适配&#xff09; 1. 项目级 build.gradle // 注意&#xff1a;沪江插件已停更&#xff0c;推荐官方兼容方案 buildscript {dependencies {classpath org.aspectj:aspectjtools:1.9.9.1 // AspectJ 工具} } 2. 模块级 build.gradle plu…...

力扣-35.搜索插入位置

题目描述 给定一个排序数组和一个目标值&#xff0c;在数组中找到目标值&#xff0c;并返回其索引。如果目标值不存在于数组中&#xff0c;返回它将会被按顺序插入的位置。 请必须使用时间复杂度为 O(log n) 的算法。 class Solution {public int searchInsert(int[] nums, …...

SAP学习笔记 - 开发26 - 前端Fiori开发 OData V2 和 V4 的差异 (Deepseek整理)

上一章用到了V2 的概念&#xff0c;其实 Fiori当中还有 V4&#xff0c;咱们这一章来总结一下 V2 和 V4。 SAP学习笔记 - 开发25 - 前端Fiori开发 Remote OData Service(使用远端Odata服务)&#xff0c;代理中间件&#xff08;ui5-middleware-simpleproxy&#xff09;-CSDN博客…...

GO协程(Goroutine)问题总结

在使用Go语言来编写代码时&#xff0c;遇到的一些问题总结一下 [参考文档]&#xff1a;https://www.topgoer.com/%E5%B9%B6%E5%8F%91%E7%BC%96%E7%A8%8B/goroutine.html 1. main()函数默认的Goroutine 场景再现&#xff1a; 今天在看到这个教程的时候&#xff0c;在自己的电…...

逻辑回归暴力训练预测金融欺诈

简述 「使用逻辑回归暴力预测金融欺诈&#xff0c;并不断增加特征维度持续测试」的做法&#xff0c;体现了一种逐步建模与迭代验证的实验思路&#xff0c;在金融欺诈检测中非常有价值&#xff0c;本文作为一篇回顾性记录了早年间公司给某行做反欺诈预测用到的技术和思路。百度…...