【scikit-learn 1.2版本后】sklearn.datasets中load_boston报错 使用 fetch_openml 函数来加载波士顿房价
ImportError:
load_boston
has been removed from scikit-learn since version 1.2.
由于 load_boston 已经在 scikit-learn 1.2 版本中被移除,需要使用 fetch_openml 函数来加载波士顿房价数据集。
# 导入sklearn数据集模块
from sklearn import datasets
# 导入波士顿房价数据集
data_x, data_y = datasets.fetch_openml(name="boston", version=1, as_frame=True, return_X_y=True, parser="pandas")
这段代码的功能是从 OpenML 数据集库中获取名为“boston”的数据集,并将其加载为 Pandas DataFrame 格式。具体步骤如下:
- 调用 datasets.fetch_openml 函数。
- 指定数据集名称为 “boston”,版本为 1。
- 设置 as_frame=True,使数据以 Pandas DataFrame 格式返回。
- 设置 return_X_y=True,返回特征数据和目标数据。
- 设置 parser=“pandas”,使用 Pandas 解析器。
以下是完整的报错信息,包含了修改的建议:
ImportError:
load_boston
has been removed from scikit-learn since version 1.2.
The Boston housing prices dataset has an ethical problem: as investigated in [1], the authors of this dataset engineered a non-invertible variable “B” assuming that racial self-segregation had a positive impact on house prices [2]. Furthermore the goal of the research that led to the creation of this dataset was to study the impact of air quality but it did not give adequate demonstration of the
validity of this assumption.
The scikit-learn maintainers therefore strongly discourage the use of this dataset unless the purpose of the code is to study and educate about ethical issues in data science and machine learning.
In this special case, you can fetch the dataset from the original
source::
import pandas as pd
import numpy as npdata_url = "http://lib.stat.cmu.edu/datasets/boston"
raw_df = pd.read_csv(data_url, sep="\s+", skiprows=22, header=None)
data = np.hstack([raw_df.values[::2, :], raw_df.values[1::2, :2]])
target = raw_df.values[1::2, 2]
Alternative datasets include the California housing dataset and the Ames housing dataset. You can load the datasets as follows::
from sklearn.datasets import fetch_california_housing
housing = fetch_california_housing()
for the California housing dataset and::
from sklearn.datasets import fetch_openml
housing = fetch_openml(name="house_prices", as_frame=True)
for the Ames housing dataset.
[1] M Carlisle.
“Racist data destruction?” https://medium.com/@docintangible/racist-data-destruction-113e3eff54a8
[2] Harrison Jr, David, and Daniel L. Rubinfeld. “Hedonic housing prices and the demand for clean air.” Journal of environmental economics and management 5.1 (1978): 81-102.
https://www.researchgate.net/publication/4974606_Hedonic_housing_prices_and_the_demand_for_clean_air
相关文章:

【scikit-learn 1.2版本后】sklearn.datasets中load_boston报错 使用 fetch_openml 函数来加载波士顿房价
ImportError: load_boston has been removed from scikit-learn since version 1.2. 由于 load_boston 已经在 scikit-learn 1.2 版本中被移除,需要使用 fetch_openml 函数来加载波士顿房价数据集。 # 导入sklearn数据集模块 from sklearn import datasets # 导入波…...

vxe-table v4.8+ 与 v3.10+ 导出 xlsx、支持导出合并、设置样式、宽高、边框、字体、背景、超链接、图片的详细介绍,一篇就够了
Vxe UI vue vxe-table v4.8 与 v3.10 导出 xlsx、支持导出合并、设置样式、宽高、边框、字体、背景、超链接、图片等、所有常用的 Excel 格式都能自定义,使用非常简单,纯前端实现复杂的导出。 安装插件 npm install vxe-pc-ui4.2.39 vxe-table4.8.0 vx…...

江协科技STM32学习- P36 SPI通信外设
🚀write in front🚀 🔎大家好,我是黄桃罐头,希望你看完之后,能对你有所帮助,不足请指正!共同学习交流 🎁欢迎各位→点赞👍 收藏⭐️ 留言📝…...

【大数据】ClickHouse常见的表引擎及建表语法
ClickHouse 中最强大的表引擎当属 MergeTree (合并树)引擎及该系列(*MergeTree)中的其他引擎。接下来我们就仔细了解下MergeTree 及该系列的其他引擎的使用场景及建表语法。 MergeTree MergeTree 系列的引擎被设计用于插入极大量…...

explain执行计划分析 ref_
这里写目录标题 什么是ExplainExplain命令扩展explain extendedexplain partitions 两点重要提示本文示例使用的数据库表Explain命令(关键字)explain简单示例explain结果列说明【id列】【select_type列】【table列】【type列】 【possible_keys列】【key列】【key_len列】【ref…...

网络学习/复习4传输层
1,0...

Notepad++ 更改字体大小和颜色
前言 在长时间编程或文本编辑过程中,合适的字体大小和颜色可以显著提高工作效率和减少眼睛疲劳。Notepad 提供了丰富的自定义选项,让你可以根据个人喜好调整编辑器的外观。 步骤详解 1. 更改字体大小 打开 Notepad 启动 Notepad 编辑器。 进入设置菜…...

基于SSM+小程序的宿舍管理系统(宿舍1)
👉文末查看项目功能视频演示获取源码sql脚本视频导入教程视频 1、项目介绍 本宿舍管理系统小程序有管理员和学生两个角色。 1、管理员功能有个人中心,公告信息管理,班级管理,学生管理,宿舍信息管理,宿舍…...

【案例分享】TeeChart 如何为人类绩效解决方案提供数据洞察
“过去二十年来,我们一直在使用 Steema Software 产品,尤其是 TeeChart,这是我们软件开发的基础部分。看到 TeeChart 在这段时间里不断发展、改进和增加功能,真是太棒了,这极大地增强了我们的产品。Steema 的客户和技术…...

细谈 Linux 中的多路复用epoll
大家好,我是 V 哥。在 Linux 中,epoll 是一种多路复用机制,用于高效地处理大量文件描述符(file descriptor, FD)事件。与传统的select和poll相比,epoll具有更高的性能和可扩展性,特别是在大规模…...

51c自动驾驶~合集4
我自己的原文哦~ https://blog.51cto.com/whaosoft/12413878 #MCTrack 迈驰&旷视最新MCTrack:KITTI/nuScenes/Waymo三榜单SOTA paper:MCTrack: A Unified 3D Multi-Object Tracking Framework for Autonomous Driving code:https://gi…...

回归预测 | MATLAB实现BO-BiGRU贝叶斯优化双向门控循环单元多输入单输出回归预测
要在MATLAB中实现BO-BiGRU(贝叶斯优化双向门控循环单元)进行多输入单输出回归预测,您需要执行以下步骤: 数据准备:准备您的训练数据和测试数据。 模型构建:构建BO-BiGRU模型,可以使用MATLAB中的…...

2-ARM Linux驱动开发-设备树平台驱动
一、概述 设备树(Device Tree)是一种描述硬件的数据结构,用于将硬件设备的信息传递给操作系统内核。它的主要作用是使内核能够以一种统一、灵活的方式了解硬件平台的细节,包括设备的拓扑结构、资源分配(如内存地址、中断号等)等信…...

C语言函数与递归
函数 函数是指将一组能完成一个功能或多个功能的语句放在一起的代码结构。在C语言程序中,至少会包含一个函数,主函数main()。本章将详细讲解关于函数的相关内容。 1、库函数 ⭕️C语言库函数是指在C语言标准库中预先定义好的函数,这些函数包…...

Linux下的Debugfs
debugfs 1. 简介 类似sysfs、procfs,debugfs 也是一种内存文件系统。不过不同于sysfs一个kobject对应一个文件,procfs和进程相关的特性,debugfs的灵活度很大,可以根据需求对指定的变量进行导出并提供读写接口。debugfs又是一个Li…...

【FFmpeg】调整音频文件的音量
1、调整音量的命令 1)音量调整为当前音量的十倍 ffmpeg -i inputfile -vol 1000 outputfile 2)音量调整为当前音量的一半 ffmpeg -i input.wav -filter:a "volume=0.5" output.wav3)静音 ffmpeg -i input.wav -filter:a "volume=0" output.wav4)…...

mac 打开访达快捷键
一、使用快捷键组合 1. Command N 在当前桌面或应用程序窗口中,按下“Command N”组合键可以快速打开一个新的访达窗口。这就像在 Windows 系统中通过“Ctrl N”打开新的资源管理器窗口一样。 2. Command Tab 切换 如果访达已经打开,只是被其他应…...

Ubuntu学习笔记 - Day2
文章目录 学习目标:学习内容:学习笔记:Linux系统启动过程内核引导运行init运行级别系统初始化建立终端用户登录系统 Ubuntu关机关机流程相关命令 Linux系统目录结构查看目录目录结构 文件基本属性读写权限命令 下载文件的方法安装wget工具下载…...

c++基础12比较/逻辑运算符
比较/逻辑运算符 布尔比较运算符逻辑运算符位运算符(也用于逻辑运算)1<a<10怎么表达T140399判断是否为两位数代码 布尔 在C中,布尔类型是一种基本数据类型,用于表示逻辑值,即真(true)或假…...

mac-ubuntu虚拟机(扩容-共享-vmtools)
一、磁盘扩容 使用GParted工具对Linux磁盘空间进行扩展 https://blog.csdn.net/Time_Waxk/article/details/105675468 经过上面的方式后还不够,需要再进行下面的操作 lvextend 用于扩展逻辑卷的大小,-l 选项允许指定大小。resize2fs 用于调整文件系统的…...

数学建模学习(135):使用Python基于WSM、WPM、WASPAS的多准则决策分析
1. 算法介绍 多标准决策分析(Multi-Criteria Decision Analysis, MCDA)是帮助决策者在复杂环境下做出合理选择的重要工具。WSM(加权和法)、WPM(加权乘积法)、WASPAS(加权和乘积评估法)是 MCDA 中的三种常用算法。它们广泛应用于工程、经济、供应链管理等多个领域,用于…...

VScode的C/C++点击转到定义,不是跳转定义而是跳转声明怎么办?(内附详细做法)
以最简单的以原子的跑马灯为例: 1、点击CtrlShiftP,输入setting,然后回车 2、输入Browse 3、点击下面C_Cpp > Default > Browse:Path里面添加你的工程路径 然后就可以愉快地跳转定义啦~ 希望对你有帮助,如果还不可以的话&a…...

设备管理网关(golang版本)
硬件设备:移远EC200A-CN LTE Cat 4 无线通信模块 操作系统:openwrt 技术选型:layui golang sqlite websocket 工程结构 界面展示 区域管理 设备管理 运行监控 系统参数 资源文件 版本信息...

Armv8的安全启动
目录 1. Trust Firmware 2. TF-A启动流程 3. TF-M启动流程 3.1 BL1 3.2 BL2 4.小结 在之前汽车信息安全 -- 再谈车规MCU的安全启动文章里,我们详细描述了TC3xx 、RH850、NXPS32K3的安全启动流程,而在车控类ECU中,我们也基本按照这个流程…...

冒泡排序、选择排序、计数排序、插入排序、快速排序、堆排序、归并排序JAVA实现
常见排序算法实现 冒泡排序、选择排序、计数排序、插入排序、快速排序、堆排序、归并排序JAVA实现 文章目录 常见排序算法实现冒泡排序选择排序计数排序插入排序快速排序堆排序归并排序 冒泡排序 冒泡排序算法,对给定的整数数组进行升序排序。冒泡排序是一种简单…...

SQL CASE表达式与窗口函数
CASE 表达式是一种通用的条件表达式,类似于其他编程语言中的if/else语句。 窗口函数类似于group by,但是不会改变记录行数,能扫描所有行,能对每一行执行聚合计算或其他复杂计算,并把结果填到每一行中。 1 CASE 表达式…...

基于SpringBoot的植物园管理小程序【附源码】
基于SpringBoot的植物园管理小程序 效果如下: 系统登录页面 管理员主页面 商品订单管理页面 植物园信息管理页面 小程序主页面 小程序登录页面 植物信息查询推荐页面 研究背景 随着互联网技术的快速发展和移动设备的普及,线上管理已经成为各行各业提高…...

asp.net网站项目如何设置定时器,定时获取数据
在 Global.asax.cs 文件中编写代码来初始化和启动定时器。Global.asax.cs 文件定义了应用程序全局事件,比如应用程序的启动和结束。在这里,我们将在应用程序启动时初始化和启动定时器。 using System; using System.Timers;public class Global : Syste…...

单元/集成测试解决方案
在项目开发的前期针对软件单元/模块功能开展单元/集成测试,可以尽早地发现软件Bug,避免将Bug带入系统测试阶段,有效地降低HIL测试的测试周期,也能有效降低开发成本。单元/集成测试旨在证明被测软件实现其单元/架构设计规范、证明被…...

高效作业跟踪:SpringBoot作业管理系统
1 绪论 1.1 研究背景 现在大家正处于互联网加的时代,这个时代它就是一个信息内容无比丰富,信息处理与管理变得越加高效的网络化的时代,这个时代让大家的生活不仅变得更加地便利化,也让时间变得更加地宝贵化,因为每天的…...