【深度学习】论文笔记:空间变换网络(Spatial Transformer Networks)
- 博主简介:努力学习的22级计算机科学与技术本科生一枚🌸
- 博主主页: @Yaoyao2024
- 往期回顾: 【机器学习】有监督学习·由浅入深讲解分类算法·Fisher算法讲解
- 每日一言🌼: 今天不想跑,所以才去跑,这才是长距离者的思维。
——村上春树
本文是对Google DeepMind 团队2015年发表的空间变换网络STN的详细讲解,作为初学者也是参考了很多博客,都在本文末尾给出,感谢前辈们的努力。
空间变换网络(Spatial Transformer Networks,简称STN)是一种深度学习模型,旨在增强网络对几何变换的适应能力。STN是由Max Jaderberg等人在2015年提出的,其核心思想是在传统的卷积神经网络(CNN)中嵌入一个可学习的模块,该模块能够显式地对输入图像进行空间变换,从而使得网络能够对输入图像的几何变形具有更好的适应性。STN的引入使得网络能够自动进行图像的校正,例如旋转、缩放、剪切等,这在很多视觉任务中是非常有用的,如图像识别、目标检测和图像分割等。
一、为什么提出(Why)
-
一个理想中的模型:我们希望鲁棒的图像处理模型具有空间不变性,当目标发生某种转化后,模型依然能给出同样的正确的结果
-
什么是空间不变性:举例来说,如下图所示,假设一个模型能准确把左图中的人物分类为凉宫春日,当这个目标做了放大、旋转、平移后,模型仍然能够正确分类,我们就说这个模型在这个任务上具有尺度不变性,旋转不变性,平移不变性
-
CNN在这方面的能力是不足的:maxpooling的机制给了CNN一点点这样的能力,当目标在池化单元内任意变换的话,激活的值可能是相同的,这就带来了一点点的不变性。但是池化单元一般都很小(一般是2*2),只有在深层的时候特征被处理成很小的feature map的时候这种情况才会发生
-
Spatial Transformer:本文提出的空间变换网络STN(Spatial Transformer Networks)STN可以使模型学习平移、缩放、旋转和更通用的扭曲的不变性。(二维空间变换网络)
二、STN是什么(What)
- STN对feature map(包括输入图像)进行空间变换,输出一张新的图像。
- 我们希望STN对feature map进行变换后能把图像纠正到成理想的图像,然后丢进NN去识别,举例来说,如下图所示,输入模型的图像可能是摆着各种姿势,摆在不同位置的凉宫春日,我们希望STN把它纠正到图像的正中央,放大,占满整个屏幕,然后再丢进CNN去识别。
- 这个网络可以作为单独的模块,可以在CNN的任何地方插入(即插即用),所以STN的输入不止是输入图像,可以是CNN中间层的feature map
三、STN是怎么做的(How)
STN可以通过为每个输入样本生成适当的变换来主动对图像(或特征图)进行空间变换。然后在整个特征图上(非局部)执行变换,并且可以包括缩放、裁剪、旋转以及非刚性变形。这使得包含空间变换器的网络不仅可以选择图像中最相关(注意力)的区域,还可以将这些区域转换为规范的预期姿势,以简化后续层中的推理。
如上图所示,STN的输入为 U U U,输出为 V V V,因为输入可能是中间层的feature map,所以画成了立方体(多channel),STN主要分为下述三个步骤
定位网络(Localization Network)
:这一部分是STN的核心,其任务是学习输入图像的空间变换参数。定位网络可以是任意的网络结构,它接受输入图像,并输出空间变换所需的参数。这些参数定义了一个变换矩阵,用于调整图像的空间位置。(是一个自己定义的网络,它输入 U U U,输出变化参数 Θ \Theta Θ,这个参数用来映射 U U U和 V V V的坐标关系)。网格生成器(Grid Generator)
:接收定位网络输出的变换参数,并生成一个对应于输出图像的坐标网格。这个坐标网格对应于输入图像中的每一个像素位置。根据 V V V中的坐标点和变化参数 Θ \Theta Θ,计算出 U U U中的坐标点。这里是因为 V V V的大小是自己先定义好的,当然可以得到 V V V的所有坐标点,而填充 V V V 中每个坐标点的像素值的时候,要从 U U U中去取,所以根据 V V V中每个坐标点和变化参数 Θ \Theta Θ进行运算,得到一个坐标。在sampler中就是根据这个坐标去 U U U中找到像素值,这样子来填充 V V VSampler
:要做的是填充 V V V,根据Grid generator得到的一系列坐标和原图 U U U(因为像素值要从 U U U中取)来填充,因为计算出来的坐标可能为小数,要用另外的方法来填充,比如双线性插值。从输入图像中采样像素来产生变换后的输出图像。这一步骤确保了图像的空间变换是可微分的,从而可以通过反向传播算法进行训练。
下面针对每个模块阐述一下
1、Localisation net
这个模块就是输入 U U U,输出一个变换参数 Θ \Theta Θ,那么这个 Θ \Theta Θ具体是指什么呢?
我们知道线性代数里,图像的平移,旋转和缩放都可以用矩阵运算来做
举例来说,如果想放大图像中的目标,可以这么运算,把(x,y)中的像素值填充到(x’,y’)上去,比如把原来(2,2)上的像素点,填充到(4,4)上去。
[ x ′ y ′ ] = [ 2 0 0 2 ] [ x y ] + [ 0 0 ] \begin{bmatrix}x^{'}\\y^{'}\end{bmatrix}=\begin{bmatrix}2&0\\0&2\end{bmatrix}\begin{bmatrix}x\\y\end{bmatrix}+\begin{bmatrix}0\\0\end{bmatrix} [x′y′]=[2002][xy]+[00]
如果想旋转图像中的目标,可以这么运算(可以在极坐标系中推出来,证明放到最后的附录)
[ x ′ y ′ ] = [ c o s Θ − s i n Θ s i n Θ c o s Θ ] [ x y ] + [ 0 0 ] \begin{bmatrix}x^{'}\\y^{'}\end{bmatrix}=\begin{bmatrix}cos\Theta&-sin\Theta\\sin\Theta&cos\Theta\end{bmatrix}\begin{bmatrix}x\\y\end{bmatrix}+\begin{bmatrix}0\\0\end{bmatrix} [x′y′]=[cosΘsinΘ−sinΘcosΘ][xy]+[00]
这些都是属于仿射变换(affine transformation)
[ x ′ y ′ ] = [ a b c d ] [ x y ] + [ e f ] \begin{bmatrix}x^{^{\prime}}\\y^{^{\prime}}\end{bmatrix}=\begin{bmatrix}a&b\\c&d\end{bmatrix}\begin{bmatrix}x\\y\end{bmatrix}+\begin{bmatrix}e\\f\end{bmatrix} [x′y′]=[acbd][xy]+[ef]
在仿射变化中,变化参数就是这6个变量, Θ = { a , b , c , d , e , f } (此 Θ 跟上述旋转变化里的角度 Θ 无关) \Theta=\{a,b,c,d,e,f\}\text{(此}\Theta\text{跟上述旋转变化里的角度}\Theta\text{无关)} Θ={a,b,c,d,e,f}(此Θ跟上述旋转变化里的角度Θ无关)
这6个变量就是用来映射输入图和输出图之间的坐标点的关系的,我们在第二步grid generator就要根据这个变化参数,来获取原图的坐标点。
总结如下:
- 功能:定位网络的主要任务是预测空间变换的参数。根据输入图像,这个网络会输出一组参数,这些参数定义了一个空间变换,可以是平移、旋转、缩放等或者更复杂的仿射变换或者非线性变换。
- 结构:定位网络通常是一个小型的卷积神经网络或全连接网络,其具体结构可以根据任务的复杂度和输入数据的特性来定制。网络的输出大小是固定的,对应于特定变换所需的参数数量。
2、Grid generator
有了第一步的变化参数,这一步是做个矩阵运算,这个运算是 以目标图 V V V的所有坐标点为自变量,以为参数做一个矩阵运算,得到输入图 U U U的坐标点
( x i s y i s ) = Θ ( x i t y i t 1 ) = [ Θ 11 Θ 12 Θ 13 Θ 21 Θ 22 Θ 23 ] ( x i t y i t 1 ) \begin{pmatrix}x_i^s\\y_i^s\end{pmatrix}=\Theta\begin{pmatrix}x_i^t\\y_i^t\\1\end{pmatrix}=\begin{bmatrix}\Theta_{11}&\Theta_{12}&\Theta_{13}\\\Theta_{21}&\Theta_{22}&\Theta_{23}\end{bmatrix}\begin{pmatrix}x_i^t\\y_i^t\\1\end{pmatrix} (xisyis)=Θ xityit1 =[Θ11Θ21Θ12Θ22Θ13Θ23] xityit1
其中 ( x i t , y i ) 记为输出图 V 中的第 i 个坐标点, V 中的长宽可以和 U 不一样,自己定义的,所以这里用 i 来标识第几个坐标点 ( x i s , y i ) {(x_{i}{t},y_{i})} 记 为 输 出 图 V 中 的 第 i 个 坐 标 点 , V 中 的 长 宽 可 以 和 U 不 一 样 , 自 己 定 义 的 , 所 以 这 里 用 i 来 标 识 第 几 个 坐 标 点 {(x_{i}{s},y_{i})} (xit,yi)记为输出图V中的第i个坐标点,V中的长宽可以和U不一样,自己定义的,所以这里用i来标识第几个坐标点(xis,yi)
- 功能:网格生成器接收定位网络预测的变换参数,并生成一个坐标网格,该网格代表了输入图像中每个像素映射到输出图像中的新位置。
- 原理:对于每个输出图像的像素位置,网格生成器使用变换参数来计算对应的输入图像中的坐标。这一过程通常涉及到矩阵运算,用于实现平移、旋转、缩放等仿射变换。
3、Sampler
由于在第二步计算出了V中每个点对应到U的坐标点,在这一步就可以直接根据V的坐标点取得对应到U中坐标点的像素值来进行填充,而不需要经过矩阵运算。需要注意的是,填充并不是直接填充,首先计算出来的坐标可能是小数,要处理一下,其次填充的时候往往要考虑周围的其它像素值。填充根据的公式如下。
V i = ∑ n ∑ m U n m ∗ k ( x i s − m ; ϕ x ) ∗ k ( y i s − n ; ϕ y ) V_i=\sum_n\sum_mU_{nm}*k(x_i^s-m;\phi_x)*k(y_i^s-n;\phi_y) Vi=n∑m∑Unm∗k(xis−m;ϕx)∗k(yis−n;ϕy)
举例来说,我要填充目标图V中的(2,2)这个点的像素值,经过以下计算得到(1.6,2.4)
( x i s y i s ) = [ Θ 11 Θ 12 Θ 13 Θ 21 Θ 22 Θ 23 ] ( x i t y i t 1 ) ( 1.6 2.4 ) = [ 0 0.5 0.6 1 0 0.4 ] ( 2 2 1 ) \begin{gathered}\begin{pmatrix}x_i^s\\y_i^s\end{pmatrix}=\begin{bmatrix}\Theta_{11}&\Theta_{12}&\Theta_{13}\\\Theta_{21}&\Theta_{22}&\Theta_{23}\end{bmatrix}\begin{pmatrix}x_i^t\\y_i^t\\1\end{pmatrix}\\\begin{pmatrix}1.6\\2.4\end{pmatrix}=\begin{bmatrix}0&0.5&0.6\\1&0&0.4\end{bmatrix}\begin{pmatrix}2\\2\\1\end{pmatrix}\end{gathered} (xisyis)=[Θ11Θ21Θ12Θ22Θ13Θ23] xityit1 (1.62.4)=[010.500.60.4] 221
如果四舍五入后直接填充,则难以做梯度下降。
我们知道做梯度下降时,梯度的表现就是权重发生一点点变化的时候,输出的变化会如何。
如果用四舍五入后直接填充,那么(1.6,2.4)四舍五入后变成(2,2)当 Θ \Theta Θ(我们求导的时候是需要对 Θ \Theta Θ求导的)有一点点变化的时候,(1.6,2.4)可能变成了(1.9,2.1)四舍五入后还是变成(2,2),输出并没有变化,对 Θ \Theta Θ的梯度没有改变,这个时候没法用梯度下降来优化 Θ \Theta Θ
如果采用上面双线性插值的公式来填充,在这个例子里就会考虑(2,2)周围的四个点来填充,这样子,当 Θ \Theta Θ有一点点变化的时,式子的输出就会有变化,因为 ( x i s , y i ) (x_{i}{s},y_{i}) (xis,yi)的变化会引起V的变化。注意下式中U的下标,第一个下标是纵坐标,第二个下标才是横坐标。
V = U 21 ( 1 − 0.6 ) ( 1 − 0.4 ) + U 22 ( 1 − 0.4 ) ( 1 − 0.4 ) + U 31 ( 1 − 0.6 ) ( 1 − 0.6 ) + U 32 ( 1 − 0.4 ) ( 1 − 0.6 ) V=U_{21}(1-0.6)(1-0.4)+U_{22}(1-0.4)(1-0.4)+U_{31}(1-0.6)(1-0.6)+U_{32}(1-0.4)(1-0.6) V=U21(1−0.6)(1−0.4)+U22(1−0.4)(1−0.4)+U31(1−0.6)(1−0.6)+U32(1−0.4)(1−0.6)
4、STN小结
简单总结一下,如下图所示
- Localization net根据输入图,计算得到一个Θ
- Grid generator根据输出图的坐标点和Θ,计算出输入图的坐标点,举例来说想知道输出图上(2,2)应该填充什么坐标点,则跟Θ 运算,得到(1.6,2.4)
- Sampler根据自己定义的填充规则(一般用双线性插值)来填充,比如(2,2)坐标对应到输入图上的坐标为(1.6,2.4),那么就要根据输入图上(1.6,2.4)周围的四个坐标点(1,2),(1,3),(2,2),(2,3)的像素值来填充。
四、STN模块的pytorch实现
这里我们假设Mnist数据集作为网络输入:
(1)首先定义Localisation net
的特征提取部分,为两个Conv层后接Maxpool和Relu操作:
(2)定义Localisation net的变换参数θ回归部分,为两层全连接层内接Relu:
(3)在nn.module的继承类中定义完整的STN模块操作:
五、空间变换网络的实际应用
1、STN作为网络的第一层
2、STN插入CNN 的中间层
六、评价
思想非常巧妙,因为卷积神经网络中的池化层(pooling layer)直接用一些max pooling 或者average pooling 的方法,将图片信息压缩,减少运算量提升准确率。
作者认为之前pooling的方法太过于暴力,直接将信息合并会导致关键信息无法识别出来,所以提出了一个叫空间转换器(spatial transformer)的模块,将图片中的的空间域信息做对应的空间变换,从而能将关键的信息提取出来。
Unlike pooling layers, where the receptive fields are fixed and local, the spatial transformer module is a dynamic mechanism that can actively spatially transform an image (or a feature map) by producing an appropriate transformation for each input sample.
空间转换器模型直观的实验图:
(a)列是原始的图片信息,其中第一个手写数字7没有做任何变换,第二个手写数字5,做了一定的旋转变化,而第三个手写数字6,加上了一些噪声信号;这些变化都是随机的
(b)列中的彩色边框是学习到的spatial transformer的框盒(bounding box),每一个框盒其实就是对应图片学习出来的一个spatial transformer;
🪧©列中是通过spatial transformer转换之后的特征图,可以看出7的关键区域被选择出来,5被旋转成为了正向的图片,6的噪声信息没有被识别进入。
(d)列最终可以通过这些转换后的特征图来预测出中手写数字的数值。
🌱spatial transformer其实就是注意力机制的实现,因为训练出的spatial transformer能够找出图片信息中需要被关注的区域,同时这个transformer又能够具有旋转、缩放变换的功能,这样图片局部的重要信息能够通过变换而被框盒提取出来。🌱 |
参考
- 原文链接:https://www.cnblogs.com/liaohuiqiang/p/9226335.html
- https://blog.csdn.net/qq_43700729/article/details/136601998
- 李弘毅讲 STN 网络:https://www.youtube.com/watch?v=SoCywZ1hZak
- 知乎:https://zhuanlan.zhihu.com/p/41738716
- https://blog.csdn.net/Rosemary_tu/article/details/84069878
- https://ddelephant.blog.csdn.net/article/details/111303416?fromshare=blogdetail&sharetype=blogdetail&sharerId=111303416&sharerefer=PC&sharesource=Yaoyao2024&sharefrom=from_link
本人能力有限,上述内容如有理解不当的地方,欢迎与我讨论!
相关文章:

【深度学习】论文笔记:空间变换网络(Spatial Transformer Networks)
博主简介:努力学习的22级计算机科学与技术本科生一枚🌸博主主页: Yaoyao2024往期回顾: 【机器学习】有监督学习由浅入深讲解分类算法Fisher算法讲解每日一言🌼: 今天不想跑,所以才去跑,这才是长…...

Charles抓包_Android
1.下载地址 2.破解方法 3.安卓调试办法 查看官方文档,Android N之后抓包要声明App可用User目录下的CA证书 3.1.在Proxy下进行以下设置(路径Proxy->Proxy Settings) 3.1.1.不抓包Windows,即不勾选此项,免得打输出不…...

【MATLAB源码-第204期】基于matlab的语音降噪算法对比仿真,谱减法、维纳滤波法、自适应滤波法;参数可调。
操作环境: MATLAB 2022a 1、算法描述 语音降噪技术的目的是改善语音信号的质量,通过减少或消除背景噪声,使得语音更清晰,便于听者理解或进一步的语音处理任务,如语音识别和语音通讯。在许多实际应用中,如…...

Scala的包及其导入
//1.单个导入 //import com.sala02.A //import com.sala02.B //2.导入多个类 //import com.sala02.{A,B} //3.导入一个包下的所有类:包名._ //import com.sala02._ //4.导入一个包中的类,给他改个名字 //格式:import 包名.{原来的名字 > 新…...

deepfm模型实现招聘职位推荐算法
项目源码获取方式见文章末尾! 600多个深度学习项目资料,快来加入社群一起学习吧。 《------往期经典推荐------》 项目名称 1.【基于CNN-RNN的影像报告生成】 2.【卫星图像道路检测DeepLabV3Plus模型】 3.【GAN模型实现二次元头像生成】 4.【CNN模型实现…...

编程之路:蓝桥杯备赛指南
文章目录 一、蓝桥杯的起源与发展二、比赛的目的与意义三、比赛内容与形式四、比赛前的准备五、获奖与激励六、蓝桥杯的影响力七、蓝桥杯比赛注意事项详解使用Dev-C的注意事项 一、蓝桥杯的起源与发展 蓝桥杯全国软件和信息技术专业人才大赛,简称蓝桥杯,…...

Android 15 在状态栏时间中显示秒数
这是更新后的博客草稿,关于在Android 15状态栏中显示秒数的实现: 在Android 15状态栏中显示秒数 在Android 15中,您可以通过两种方式在状态栏中显示秒数:使用ADB命令或修改系统源代码。下面详细介绍这两种方法。 方法一:通过ADB实现 您可以使用ADB(Android调试桥)命令…...

Flutter 鸿蒙next版本:自定义对话框与表单验证的动态反馈与错误处理
在现代移动应用开发中,用户体验是至关重要的一环。Flutter和鸿蒙操作系统(HarmonyOS)的结合,为开发者提供了一个强大的平台,以创建跨平台、高性能的应用程序。本文将探讨如何在Flutter与鸿蒙next版本中创建自定义对话框…...

Unreal Engine5中使用 Lyra框架
UE5系列文章目录 文章目录 UE5系列文章目录前言一、Lyra和AIS框架的区别二、下载官方Lyra游戏示例三、Lyra在动画蓝图中的使用 前言 Unreal Engine 5(UE5)提供了多种用于游戏开发的模板和框架,其中Lyra和AlS是两个不同的示例项目,…...

Spring Security-02-Spring Security认证方式-HTTP基本认证、Form表单认证、HTTP摘要认证、前后端分离安全处理方案
Lison <dreamlison163.com>, v1.0.0, 2024.06.01 Spring Security-02-Spring Security认证方式-HTTP基本认证、Form表单认证、HTTP摘要认证、前后端分离安全处理方案 文章目录 Spring Security-02-Spring Security认证方式-HTTP基本认证、Form表单认证、HTTP摘要认证、…...

【scikit-learn 1.2版本后】sklearn.datasets中load_boston报错 使用 fetch_openml 函数来加载波士顿房价
ImportError: load_boston has been removed from scikit-learn since version 1.2. 由于 load_boston 已经在 scikit-learn 1.2 版本中被移除,需要使用 fetch_openml 函数来加载波士顿房价数据集。 # 导入sklearn数据集模块 from sklearn import datasets # 导入波…...

vxe-table v4.8+ 与 v3.10+ 导出 xlsx、支持导出合并、设置样式、宽高、边框、字体、背景、超链接、图片的详细介绍,一篇就够了
Vxe UI vue vxe-table v4.8 与 v3.10 导出 xlsx、支持导出合并、设置样式、宽高、边框、字体、背景、超链接、图片等、所有常用的 Excel 格式都能自定义,使用非常简单,纯前端实现复杂的导出。 安装插件 npm install vxe-pc-ui4.2.39 vxe-table4.8.0 vx…...

江协科技STM32学习- P36 SPI通信外设
🚀write in front🚀 🔎大家好,我是黄桃罐头,希望你看完之后,能对你有所帮助,不足请指正!共同学习交流 🎁欢迎各位→点赞👍 收藏⭐️ 留言📝…...

【大数据】ClickHouse常见的表引擎及建表语法
ClickHouse 中最强大的表引擎当属 MergeTree (合并树)引擎及该系列(*MergeTree)中的其他引擎。接下来我们就仔细了解下MergeTree 及该系列的其他引擎的使用场景及建表语法。 MergeTree MergeTree 系列的引擎被设计用于插入极大量…...

explain执行计划分析 ref_
这里写目录标题 什么是ExplainExplain命令扩展explain extendedexplain partitions 两点重要提示本文示例使用的数据库表Explain命令(关键字)explain简单示例explain结果列说明【id列】【select_type列】【table列】【type列】 【possible_keys列】【key列】【key_len列】【ref…...

网络学习/复习4传输层
1,0...

Notepad++ 更改字体大小和颜色
前言 在长时间编程或文本编辑过程中,合适的字体大小和颜色可以显著提高工作效率和减少眼睛疲劳。Notepad 提供了丰富的自定义选项,让你可以根据个人喜好调整编辑器的外观。 步骤详解 1. 更改字体大小 打开 Notepad 启动 Notepad 编辑器。 进入设置菜…...

基于SSM+小程序的宿舍管理系统(宿舍1)
👉文末查看项目功能视频演示获取源码sql脚本视频导入教程视频 1、项目介绍 本宿舍管理系统小程序有管理员和学生两个角色。 1、管理员功能有个人中心,公告信息管理,班级管理,学生管理,宿舍信息管理,宿舍…...

【案例分享】TeeChart 如何为人类绩效解决方案提供数据洞察
“过去二十年来,我们一直在使用 Steema Software 产品,尤其是 TeeChart,这是我们软件开发的基础部分。看到 TeeChart 在这段时间里不断发展、改进和增加功能,真是太棒了,这极大地增强了我们的产品。Steema 的客户和技术…...

细谈 Linux 中的多路复用epoll
大家好,我是 V 哥。在 Linux 中,epoll 是一种多路复用机制,用于高效地处理大量文件描述符(file descriptor, FD)事件。与传统的select和poll相比,epoll具有更高的性能和可扩展性,特别是在大规模…...

51c自动驾驶~合集4
我自己的原文哦~ https://blog.51cto.com/whaosoft/12413878 #MCTrack 迈驰&旷视最新MCTrack:KITTI/nuScenes/Waymo三榜单SOTA paper:MCTrack: A Unified 3D Multi-Object Tracking Framework for Autonomous Driving code:https://gi…...

回归预测 | MATLAB实现BO-BiGRU贝叶斯优化双向门控循环单元多输入单输出回归预测
要在MATLAB中实现BO-BiGRU(贝叶斯优化双向门控循环单元)进行多输入单输出回归预测,您需要执行以下步骤: 数据准备:准备您的训练数据和测试数据。 模型构建:构建BO-BiGRU模型,可以使用MATLAB中的…...

2-ARM Linux驱动开发-设备树平台驱动
一、概述 设备树(Device Tree)是一种描述硬件的数据结构,用于将硬件设备的信息传递给操作系统内核。它的主要作用是使内核能够以一种统一、灵活的方式了解硬件平台的细节,包括设备的拓扑结构、资源分配(如内存地址、中断号等)等信…...

C语言函数与递归
函数 函数是指将一组能完成一个功能或多个功能的语句放在一起的代码结构。在C语言程序中,至少会包含一个函数,主函数main()。本章将详细讲解关于函数的相关内容。 1、库函数 ⭕️C语言库函数是指在C语言标准库中预先定义好的函数,这些函数包…...

Linux下的Debugfs
debugfs 1. 简介 类似sysfs、procfs,debugfs 也是一种内存文件系统。不过不同于sysfs一个kobject对应一个文件,procfs和进程相关的特性,debugfs的灵活度很大,可以根据需求对指定的变量进行导出并提供读写接口。debugfs又是一个Li…...

【FFmpeg】调整音频文件的音量
1、调整音量的命令 1)音量调整为当前音量的十倍 ffmpeg -i inputfile -vol 1000 outputfile 2)音量调整为当前音量的一半 ffmpeg -i input.wav -filter:a "volume=0.5" output.wav3)静音 ffmpeg -i input.wav -filter:a "volume=0" output.wav4)…...

mac 打开访达快捷键
一、使用快捷键组合 1. Command N 在当前桌面或应用程序窗口中,按下“Command N”组合键可以快速打开一个新的访达窗口。这就像在 Windows 系统中通过“Ctrl N”打开新的资源管理器窗口一样。 2. Command Tab 切换 如果访达已经打开,只是被其他应…...

Ubuntu学习笔记 - Day2
文章目录 学习目标:学习内容:学习笔记:Linux系统启动过程内核引导运行init运行级别系统初始化建立终端用户登录系统 Ubuntu关机关机流程相关命令 Linux系统目录结构查看目录目录结构 文件基本属性读写权限命令 下载文件的方法安装wget工具下载…...

c++基础12比较/逻辑运算符
比较/逻辑运算符 布尔比较运算符逻辑运算符位运算符(也用于逻辑运算)1<a<10怎么表达T140399判断是否为两位数代码 布尔 在C中,布尔类型是一种基本数据类型,用于表示逻辑值,即真(true)或假…...

mac-ubuntu虚拟机(扩容-共享-vmtools)
一、磁盘扩容 使用GParted工具对Linux磁盘空间进行扩展 https://blog.csdn.net/Time_Waxk/article/details/105675468 经过上面的方式后还不够,需要再进行下面的操作 lvextend 用于扩展逻辑卷的大小,-l 选项允许指定大小。resize2fs 用于调整文件系统的…...