调用数据集mnist(下载+调用全攻略)
1、下载mnist数据集请自取:
通过百度网盘分享的文件:mnist
链接:https://pan.baidu.com/s/1ia3vFA73hEtWK9qU-O-4iQ?pwd=mnis
提取码:mnis
下载后把数据集放在没有中文的路径下。
# 本文将下载好的数据集放在C:\DeepLearning\dataset路径下
代码中 dataset_dir = 'C:\DeepLearning\dataset'
2、加载mnist数据集
以下是mnist.py文件,用于加载数据集
# coding: utf-8
try:import urllib.request
except ImportError:raise ImportError('You should use Python 3.x')
import os.path
import gzip
import pickle
import os
import numpy as np# url_base = 'https://ossci-datasets.s3.amazonaws.com/mnist/' # mirror site
key_file = {'train_img':'train-images-idx3-ubyte.gz','train_label':'train-labels-idx1-ubyte.gz','test_img':'t10k-images-idx3-ubyte.gz','test_label':'t10k-labels-idx1-ubyte.gz'
}# 将下载好的数据集放在C:\DeepLearning\dataset路径下
dataset_dir = 'C:\DeepLearning\dataset'
save_file = dataset_dir + "/mnist.pkl"train_num = 60000
test_num = 10000
img_dim = (1, 28, 28)
img_size = 784# 注释掉下载
# def _download(file_name):
# file_path = dataset_dir + "/" + file_name# if os.path.exists(file_path):
# return# print("Downloading " + file_name + " ... ")
# urllib.request.urlretrieve(url_base + file_name, file_path)
# print("Done")# def download_mnist():
# for v in key_file.values():
# _download(v)def _load_label(file_name):file_path = dataset_dir + "/" + file_nameprint("Converting " + file_name + " to NumPy Array ...")with gzip.open(file_path, 'rb') as f:labels = np.frombuffer(f.read(), np.uint8, offset=8)print("Done")return labelsdef _load_img(file_name):file_path = dataset_dir + "/" + file_nameprint("Converting " + file_name + " to NumPy Array ...") with gzip.open(file_path, 'rb') as f:data = np.frombuffer(f.read(), np.uint8, offset=16)data = data.reshape(-1, img_size)print("Done")return datadef _convert_numpy():dataset = {}dataset['train_img'] = _load_img(key_file['train_img'])dataset['train_label'] = _load_label(key_file['train_label']) dataset['test_img'] = _load_img(key_file['test_img'])dataset['test_label'] = _load_label(key_file['test_label'])return datasetdef init_mnist():# download_mnist() 取消下载dataset = _convert_numpy()print("Creating pickle file ...")with open(save_file, 'wb') as f:pickle.dump(dataset, f, -1)print("Done!")def _change_one_hot_label(X):T = np.zeros((X.size, 10))for idx, row in enumerate(T):row[X[idx]] = 1return Tdef load_mnist(normalize=True, flatten=True, one_hot_label=False):"""读入MNIST数据集Parameters----------normalize : 将图像的像素值正规化为0.0~1.0one_hot_label : one_hot_label为True的情况下,标签作为one-hot数组返回one-hot数组是指[0,0,1,0,0,0,0,0,0,0]这样的数组flatten : 是否将图像展开为一维数组Returns-------(训练图像, 训练标签), (测试图像, 测试标签)"""if not os.path.exists(save_file):init_mnist()with open(save_file, 'rb') as f:dataset = pickle.load(f)if normalize:for key in ('train_img', 'test_img'):dataset[key] = dataset[key].astype(np.float32)dataset[key] /= 255.0if one_hot_label:dataset['train_label'] = _change_one_hot_label(dataset['train_label'])dataset['test_label'] = _change_one_hot_label(dataset['test_label'])if not flatten:for key in ('train_img', 'test_img'):dataset[key] = dataset[key].reshape(-1, 1, 28, 28)return (dataset['train_img'], dataset['train_label']), (dataset['test_img'], dataset['test_label']) if __name__ == '__main__':init_mnist()
3、调用数据集
mnist_show.py文件用于调用数据集。
注意,第三行导入父目录,父目录必须有dataset文件夹,文件夹中有mnist.py文件,此代码才可以调用mnist.py文件。
# coding: utf-8
import sys, os
sys.path.append(os.pardir) # 为了导入父目录的文件而进行的设定
import numpy as np
from dataset.mnist import load_mnist #此处要求在当前文件路径下有dataset文件夹,文件夹中有mnist.py文件
from PIL import Imagedef img_show(img):pil_img = Image.fromarray(np.uint8(img))pil_img.show()(x_train, t_train), (x_test, t_test) = load_mnist(flatten=True, normalize=False)img = x_train[0]
label = t_train[0]
print(label) # 5print(img.shape) # (784,)
img = img.reshape(28, 28) # 把图像的形状变为原来的尺寸
print(img.shape) # (28, 28)img_show(img)
4、批处理
neuralne_mnist_batch.py
# coding: utf-8
import sys, os
sys.path.append(os.pardir) # 为了导入父目录的文件而进行的设定
import numpy as np
import pickle
from dataset.mnist import load_mnist
from common.functions import sigmoid, softmaxdef get_data():(x_train, t_train), (x_test, t_test) = load_mnist(normalize=True, flatten=True, one_hot_label=False)return x_test, t_testdef init_network():with open("sample_weight.pkl", 'rb') as f:network = pickle.load(f)return networkdef predict(network, x):w1, w2, w3 = network['W1'], network['W2'], network['W3']b1, b2, b3 = network['b1'], network['b2'], network['b3']a1 = np.dot(x, w1) + b1z1 = sigmoid(a1)a2 = np.dot(z1, w2) + b2z2 = sigmoid(a2)a3 = np.dot(z2, w3) + b3y = softmax(a3)return yx, t = get_data()
network = init_network()batch_size = 100 # 批数量
accuracy_cnt = 0for i in range(0, len(x), batch_size):x_batch = x[i:i+batch_size]y_batch = predict(network, x_batch)p = np.argmax(y_batch, axis=1)accuracy_cnt += np.sum(p == t[i:i+batch_size])print("Accuracy:" + str(float(accuracy_cnt) / len(x)))
相关文章:
调用数据集mnist(下载+调用全攻略)
1、下载mnist数据集请自取: 通过百度网盘分享的文件:mnist 链接:https://pan.baidu.com/s/1ia3vFA73hEtWK9qU-O-4iQ?pwdmnis 提取码:mnis 下载后把数据集放在没有中文的路径下。 # 本文将下载好的数据集放在C:\DeepLearning\…...
【基础语法】Java Scanner hasNext() 和 hasNextLine() 的区别
OJ在线编程常见输入输出练习中默认模板 import java.util.Scanner;// 注意类名必须为 Main, 不要有任何 package xxx 信息 public class Main {public static void main(String[] args) {Scanner in new Scanner(System.in);// 注意 hasNext 和 hasNextLine 的区别while (in.…...
react使用Fullcalendar 实战用法
使用步骤请参考:react使用Fullcalendar 卡片式的日历: 需求图: 卡片式的日历,其实我是推荐 antd的,我两个都写了一下都能实现。 antd 的代码: antd的我直接用的官网示例:antd 日历示例 i…...
优秀项目经理必知的10款项目管理软件推荐
本文精心为项目经理推荐30款国内外免费的项目管理软件,涵盖桌面应用与Web平台,其中不乏优秀的开源软件。这些工具旨在助力项目经理高效规划、跟踪与控制项目,无论是通过甘特图进行可视化管理,还是利用任务分配、团队协作等功能&am…...
植物神经紊乱不用怕,这些维生素来帮你!
你是否经常感到身体疲惫、情绪波动大、心悸、胸闷?这可能是植物神经紊乱在作祟。别担心,通过合理的维生素补充,可以有效缓解症状,提升生活质量。今天,我们就来聊聊植物神经紊乱患者应该补充哪些维生素。 🔍…...
NRF52832学习笔记(41)——添加串口库libuarte
一、背景 由于板子上不支持硬件流控,在使用 app_uart_fifo 库接收串口大数据时,频繁报 APP_UART_COMMUNICATION_ERROR 错误,多次重新初始化后,串口也不再产生中断了。查看官方论坛后决定使用串口异步库 libuarte。 二、简介 Li…...
Moore Perf System 1.1版本
Moore Perf System(一款性能分析工具) 提供可视化界面,在时间轴上按时间顺序显示 CPU 和 GPU 的事件、吞吐和性能指标,帮助开发人员方便、快速、准确的定位到系统级别的性能瓶颈,进而进行针对性分析和优化,…...
SpringBoot+Shirp的权限管理
目录 怎么实现动态菜单 1.html页面 2.获取动态菜单 Shiro权限刷新 1. 配置Shiro 2. 创建权限刷新服务 3. 调用权限刷新服务 注意事项 如何更新ShiroFilter初始权限 怎么实现动态菜单 1.html页面 <ul class"nav side-menu"><!--第一重循环…...
OpenCV图像基础
目录 显示窗口 创建空白图像 保存图片 图像裁剪 调整图片大小 图像绘制 绘制圆形 绘制矩形 绘制直线 绘制文本 中文乱码 控制鼠标 视频处理 显示窗口 cv2.namedWindow(winname, flagsNone) 创建一个命名窗口,以便在该窗口中显示图像或进行其他图形操作…...
基于MATLAB的图像拼接技术
实验名称:基于MATLAB的图像拼接技术实验目的:利用图像拼接技术得到超宽视角的图像,用来虚拟实际场景。实验原理: 基于相位相关的图像拼接技术是一种基于频域的方法,通过求得图像在频域上是相位相关特点来找到特征位置…...
ComfyUI 快速入门(环境搭建)
ComfyUI 是一个现代化、灵活的用户界面(UI)工具,专为 AI 模型和深度学习框架设计,能够快速实现可视化操作和定制化界面。在本教程中,我们将介绍如何在本地机器上快速搭建 ComfyUI 环境,帮助你开始使用这一工…...
将HTML项目上传至Gitee仓库(详细教程)
1.登录giett giett地址链接:Gitee - 基于 Git 的代码托管和研发协作平台 2.新建一个giett仓库 创建后得到远程仓库: 3、在本地项目文件夹右击鼠标点击 Open Git Bash Here 4、输入命令 命令:git init,这个目录变成git可以管理的仓库,会出…...
如何应对Oracle SQL语句的数据去重问题,应该考虑哪几个方面?
引言 在数据管理和数据库设计中,数据去重是一个重要的课题。随着信息技术的快速发展,数据的产生速度和数量都在急剧增加,如何有效地管理和维护这些数据成为了一个亟待解决的问题。 数据去重不仅可以减少存储空间的占用,还可以提高数据查询的效率,确保数据的准确性和一致…...
论负载均衡技术在Web系统中的应用论文
一、概要叙述软件项目及其主要工作 在2023年,我有幸参与了某公司电子商务平台的研发项目,担任系统架构设计师一职。该项目旨在构建一个高性能、高可用性的电子商务平台,以支撑公司日益增长的在线业务需求。作为系统架构设计的核心成员&#…...
NumPy 数据类型
1.常用 NumPy 基本类型 (1)bool_:布尔型数据类型(True 或者 False) (2)int_:默认的整数类型(类似C 语言long,int32 或 int64) (3&a…...
JavaScript——(4)
【DOM】 一、DOM基本概念 DOM(Document Object Model,文档对象模型)是 JavaScript 操作 HTML 文档的接口,使文档操作变得非常优雅、简便。 DOM 最大的特点就是将 HTML 文档表示为 “节点树”。 DOM 元素/节点:就是…...
每日一练 | DHCP Relay(DHCP 中继)
01 真题题目 DHCP Relay 又称为 DHCP 中继,下列关于 DHCP Relay 的说法正确的是(多选): A. DHCP 协议多采用广播报文,如果出现多个子网则无法穿越,所以需要 DHCP Relay 设备。 B. DHCP Relay 一定是一台交…...
`psdparse`:解锁Photoshop PSD文件的Python密钥
文章目录 psdparse:解锁Photoshop PSD文件的Python密钥背景:为何选择psdparse?psdparse是什么?如何安装psdparse?简单函数使用方法应用场景常见Bug及解决方案总结 psdparse:解锁Photoshop PSD文件的Python密…...
考研要求掌握的C语言程度(插入排序)
插入排序是啥类型的排序 插入类型的 插入排序经常用在啥类型场景下 用在有序序列下的基础上插入新数据 时间复杂度分析 如果是有序的基础下,最好的时间复杂度是O(n); 普通情况下是O(n^2) 插入排序的原理是啥&am…...
mybatis源码解析-sql执行流程
1 执行器的创建 1. SimpleExecutor 描述:最基本的执行器,每次查询都会创建新的语句对象,并且不会缓存任何结果。 特点: 每次查询都会创建新的 PreparedStatement 对象。 不支持一级缓存。 适用于简单的查询操作,不…...
Vim 调用外部命令学习笔记
Vim 外部命令集成完全指南 文章目录 Vim 外部命令集成完全指南核心概念理解命令语法解析语法对比 常用外部命令详解文本排序与去重文本筛选与搜索高级 grep 搜索技巧文本替换与编辑字符处理高级文本处理编程语言处理其他实用命令 范围操作示例指定行范围处理复合命令示例 实用技…...
零门槛NAS搭建:WinNAS如何让普通电脑秒变私有云?
一、核心优势:专为Windows用户设计的极简NAS WinNAS由深圳耘想存储科技开发,是一款收费低廉但功能全面的Windows NAS工具,主打“无学习成本部署” 。与其他NAS软件相比,其优势在于: 无需硬件改造:将任意W…...
大话软工笔记—需求分析概述
需求分析,就是要对需求调研收集到的资料信息逐个地进行拆分、研究,从大量的不确定“需求”中确定出哪些需求最终要转换为确定的“功能需求”。 需求分析的作用非常重要,后续设计的依据主要来自于需求分析的成果,包括: 项目的目的…...
三维GIS开发cesium智慧地铁教程(5)Cesium相机控制
一、环境搭建 <script src"../cesium1.99/Build/Cesium/Cesium.js"></script> <link rel"stylesheet" href"../cesium1.99/Build/Cesium/Widgets/widgets.css"> 关键配置点: 路径验证:确保相对路径.…...
深入理解JavaScript设计模式之单例模式
目录 什么是单例模式为什么需要单例模式常见应用场景包括 单例模式实现透明单例模式实现不透明单例模式用代理实现单例模式javaScript中的单例模式使用命名空间使用闭包封装私有变量 惰性单例通用的惰性单例 结语 什么是单例模式 单例模式(Singleton Pattern&#…...
最新SpringBoot+SpringCloud+Nacos微服务框架分享
文章目录 前言一、服务规划二、架构核心1.cloud的pom2.gateway的异常handler3.gateway的filter4、admin的pom5、admin的登录核心 三、code-helper分享总结 前言 最近有个活蛮赶的,根据Excel列的需求预估的工时直接打骨折,不要问我为什么,主要…...
鸿蒙中用HarmonyOS SDK应用服务 HarmonyOS5开发一个医院查看报告小程序
一、开发环境准备 工具安装: 下载安装DevEco Studio 4.0(支持HarmonyOS 5)配置HarmonyOS SDK 5.0确保Node.js版本≥14 项目初始化: ohpm init harmony/hospital-report-app 二、核心功能模块实现 1. 报告列表…...
Python爬虫(一):爬虫伪装
一、网站防爬机制概述 在当今互联网环境中,具有一定规模或盈利性质的网站几乎都实施了各种防爬措施。这些措施主要分为两大类: 身份验证机制:直接将未经授权的爬虫阻挡在外反爬技术体系:通过各种技术手段增加爬虫获取数据的难度…...
TRS收益互换:跨境资本流动的金融创新工具与系统化解决方案
一、TRS收益互换的本质与业务逻辑 (一)概念解析 TRS(Total Return Swap)收益互换是一种金融衍生工具,指交易双方约定在未来一定期限内,基于特定资产或指数的表现进行现金流交换的协议。其核心特征包括&am…...
【Web 进阶篇】优雅的接口设计:统一响应、全局异常处理与参数校验
系列回顾: 在上一篇中,我们成功地为应用集成了数据库,并使用 Spring Data JPA 实现了基本的 CRUD API。我们的应用现在能“记忆”数据了!但是,如果你仔细审视那些 API,会发现它们还很“粗糙”:有…...
