当前位置: 首页 > news >正文

基于MATLAB的图像拼接技术

  • 实验名称:基于MATLAB的图像拼接技术
  • 实验目的:利用图像拼接技术得到超宽视角的图像,用来虚拟实际场景。
  • 实验原理:

基于相位相关的图像拼接技术是一种基于频域的方法,通过求得图像在频域上是相位相关特点来找到特征位置,从而进行图像拼接。其基本原理是基于傅氏功率谱的相关技术。该方法仅利用互功率谱中的相位信息进行图像配准,对图像间的亮度变化不敏感,而且所获得的相关峰尖突出,具有一定的鲁棒性和较高的配准精度。

      基于相位相关法进行图像拼接的基本原理如下:假设f(x,y)表示尺寸      为M*N的图像,该函数的二维离散傅里叶变换(DFT)为:

b=imread('8.jpg');

figure

imshow(a);

figure

imshow(b);

imwrite(b,'160.jpg');

IMG={a,b};                                            %将图片存为元胞结构

num=size(IMG,2);                                      %计算图片个数

move_ht=0;                                           %累计平移量初值

move_wd=0;                    

for count=1:num-1

  input1=IMG{count};                                  %读取图象

  input11=imresize(rgb2gray(input1),[300,200]);                             %将图象转为灰度图像

  input2=IMG{count+1};

 input12=imresize(rgb2gray(input2),[300,200]);

 F1=fft2(double(input11));                                          %二维傅里叶变换

F2=fft2(double(input12));

pdm=exp(1i*(angle(F1)-angle(F2)));                           %求互功率谱

cps=real(ifft2(pdm));       %傅里叶反变换,取冲激函数的实部

[i1,j1]=find(cps==max(max(cps)));    %需找峰值点

HtTrans=i1-1;                   %得到平移量

WdTrans=j1-1;

        if(i1>size(input2,1)/2)

           HtTrans=HtTrans-size(cps,1);

        end

        if(j1>size(input2,2)/2)

           WdTrans=WdTrans-size(cps,2);

        end

   move_ht=HtTrans;           %最终平移量

move_wd=WdTrans;

ht=move_ht;wd=move_wd;

move_ht=move_ht+ht;                                 %计算累计平移量

  move_wd=move_wd+wd;

  if count==1                                         %拼接图像

  coimage=my_move(input11,input12,move_ht,move_wd);

  else

  coimage=my_move(coimage,imput12,move_ht,move_wd);

  end

end

coimage1=coimage(15:size(coimage,1)-12,:);                  %切割图像

figure

imshow(uint8(coimage));

toc

time=toc

imwrite(uint8(coimage),'161.jpg');

function coimage=my_move(input1,input2,move_ht,move_wd)

%根据平移量拼接图像

total_ht=max(size(input1,1),(abs(move_ht)+size(input2,1)));

total_wd=max(size(input1,2),(abs(move_wd)+size(input2,2)));

combImage=zeros(total_ht,total_wd);    %按照总大小建立矩阵

regimg1=zeros(total_ht,total_wd);       %配准模板1

regimg2=zeros(total_ht,total_wd);       %配准模板2

%根据平移量选择配准方式即选择拼接图像的位置

if((move_ht>=0)&(move_wd>=0))

regimg1(1:size(input1,1),1:size(input1,2))=input1;

regimg2((1+move_ht):(move_ht+size(input2,1)),(1+move_wd):(move_wd+size(input2,2)))=input2;

elseif((move_ht<0)&(move_wd<0))

regimg2(1:size(input2,1),1:size(input2,2))=input2;

regimg1((1+abs(move_ht)):(abs(move_ht)+size(input1,1)),(1+abs(move_wd)):(abs(move_wd)+size(input1,2)))=input1;

elseif((move_ht>=0)&(move_wd<0))

regimg2((move_ht+1):(move_ht+size(input2,1)),1:size(input2,2))=input2;

regimg1(1:size(input1,1),(abs(move_wd)+1):(abs(move_wd)+size(input1,2)))=input1;

elseif((move_ht<0)&(move_wd>=0))

regimg1((abs(move_ht)+1):(abs(move_ht)+size(input1,1)),1:size(input1,2))=input1;

regimg2(1:size(input2,1),(move_wd+1):(move_wd+size(input2,2)))=input2;

end

if sum(sum(regimg1==0))>sum(sum(regimg2==0)) %选择零点较多的配准图像为拼接图像

plant=regimg1;  bleed=regimg2;

else

plant=regimg2;  bleed=regimg1;

end

combImage=plant;      %得到拼接图像

for p=1:total_ht

for q=1:total_wd

if(combImage(p,q)==0)

combImage(p,q)=bleed(p,q);  %将拼接图像的零点用另一幅图覆盖

end

end

end

%%

function [move_ht,move_wd]=my_trans(input1,input2)           %计算两幅图像平移量

F1=fft2(input1);                                          %二维傅里叶变换

F2=fft2(input2);

pdm=exp(1i*(angle(F1)-angle(F2)));                           %求互功率谱

cps=real(ifft2(pdm));       %傅里叶反变换,取冲激函数的实部

[i1,j1]=find(cps==max(max(cps)));    %需找峰值点

HtTrans=i1-1;                   %得到平移量

WdTrans=j1-1;

        if(i1>size(input2,1)/2)

           HtTrans=HtTrans-size(cps,1);

        end

        if(j1>size(input2,2)/2)

           WdTrans=WdTrans-size(cps,2);

        end

   move_ht=HtTrans;           %最终平移量

move_wd=WdTrans;

end

五 运行结果

相关文章:

基于MATLAB的图像拼接技术

实验名称&#xff1a;基于MATLAB的图像拼接技术实验目的&#xff1a;利用图像拼接技术得到超宽视角的图像&#xff0c;用来虚拟实际场景。实验原理&#xff1a; 基于相位相关的图像拼接技术是一种基于频域的方法&#xff0c;通过求得图像在频域上是相位相关特点来找到特征位置…...

ComfyUI 快速入门(环境搭建)

ComfyUI 是一个现代化、灵活的用户界面&#xff08;UI&#xff09;工具&#xff0c;专为 AI 模型和深度学习框架设计&#xff0c;能够快速实现可视化操作和定制化界面。在本教程中&#xff0c;我们将介绍如何在本地机器上快速搭建 ComfyUI 环境&#xff0c;帮助你开始使用这一工…...

将HTML项目上传至Gitee仓库(详细教程)

1.登录giett giett地址链接:Gitee - 基于 Git 的代码托管和研发协作平台 2.新建一个giett仓库 创建后得到远程仓库&#xff1a; 3、在本地项目文件夹右击鼠标点击 Open Git Bash Here 4、输入命令 命令:git init&#xff0c;这个目录变成git可以管理的仓库&#xff0c;会出…...

如何应对Oracle SQL语句的数据去重问题,应该考虑哪几个方面?

引言 在数据管理和数据库设计中,数据去重是一个重要的课题。随着信息技术的快速发展,数据的产生速度和数量都在急剧增加,如何有效地管理和维护这些数据成为了一个亟待解决的问题。 数据去重不仅可以减少存储空间的占用,还可以提高数据查询的效率,确保数据的准确性和一致…...

论负载均衡技术在Web系统中的应用论文

一、概要叙述软件项目及其主要工作 在2023年&#xff0c;我有幸参与了某公司电子商务平台的研发项目&#xff0c;担任系统架构设计师一职。该项目旨在构建一个高性能、高可用性的电子商务平台&#xff0c;以支撑公司日益增长的在线业务需求。作为系统架构设计的核心成员&#…...

NumPy 数据类型

1.常用 NumPy 基本类型 &#xff08;1&#xff09;bool_&#xff1a;布尔型数据类型&#xff08;True 或者 False&#xff09; &#xff08;2&#xff09;int_&#xff1a;默认的整数类型&#xff08;类似C 语言long&#xff0c;int32 或 int64&#xff09; &#xff08;3&a…...

JavaScript——(4)

【DOM】 一、DOM基本概念 DOM&#xff08;Document Object Model&#xff0c;文档对象模型&#xff09;是 JavaScript 操作 HTML 文档的接口&#xff0c;使文档操作变得非常优雅、简便。 DOM 最大的特点就是将 HTML 文档表示为 “节点树”。 DOM 元素/节点&#xff1a;就是…...

每日一练 | DHCP Relay(DHCP 中继)

01 真题题目 DHCP Relay 又称为 DHCP 中继&#xff0c;下列关于 DHCP Relay 的说法正确的是&#xff08;多选&#xff09;&#xff1a; A. DHCP 协议多采用广播报文&#xff0c;如果出现多个子网则无法穿越&#xff0c;所以需要 DHCP Relay 设备。 B. DHCP Relay 一定是一台交…...

`psdparse`:解锁Photoshop PSD文件的Python密钥

文章目录 psdparse&#xff1a;解锁Photoshop PSD文件的Python密钥背景&#xff1a;为何选择psdparse&#xff1f;psdparse是什么&#xff1f;如何安装psdparse&#xff1f;简单函数使用方法应用场景常见Bug及解决方案总结 psdparse&#xff1a;解锁Photoshop PSD文件的Python密…...

考研要求掌握的C语言程度(插入排序)

插入排序是啥类型的排序 插入类型的 插入排序经常用在啥类型场景下 用在有序序列下的基础上插入新数据 时间复杂度分析 如果是有序的基础下&#xff0c;最好的时间复杂度是O&#xff08;n&#xff09;; 普通情况下是O&#xff08;n^2&#xff09; 插入排序的原理是啥&am…...

mybatis源码解析-sql执行流程

1 执行器的创建 1. SimpleExecutor 描述&#xff1a;最基本的执行器&#xff0c;每次查询都会创建新的语句对象&#xff0c;并且不会缓存任何结果。 特点&#xff1a; 每次查询都会创建新的 PreparedStatement 对象。 不支持一级缓存。 适用于简单的查询操作&#xff0c;不…...

Golang | Leetcode Golang题解之第538题把二叉搜索树转换为累加树

题目&#xff1a; 题解&#xff1a; func getSuccessor(node *TreeNode) *TreeNode {succ : node.Rightfor succ.Left ! nil && succ.Left ! node {succ succ.Left}return succ }func convertBST(root *TreeNode) *TreeNode {sum : 0node : rootfor node ! nil {if n…...

【linux】HTTPS 协议原理

1. 了解 HTTPS 协议原理 &#xff08;一&#xff09;认识 HTTPS HTTPS 也是一种应用层协议&#xff0c;是在 HTTP 协议的基础上引入了一个加密层 因为 HTTP协议的内容都是按照文本的方式进行传输的&#xff0c;这个过程中&#xff0c;可能会出现一些篡改的情况 &#xff08;…...

安利一款开源企业级的报表系统SpringReport

SpringReport是一款企业级的报表系统&#xff0c;支持在线设计报表&#xff0c;并绑定动态数据源&#xff0c;无需写代码即可快速生成想要的报表&#xff0c;可以支持excel报表和word报表两种格式&#xff0c;同时还可以支持excel多人协同编辑&#xff0c;后续考虑实现大屏设计…...

数据安全-接口数据混合加密笔记

接口数据传输安全设计方案 采用非对称加密对称加密混合方式&#xff0c;接口混合加、解密过程梳理&#xff1a; 后端准备sm2公钥和私钥后端将SM2公钥传输到前端前端生成SM4密钥前端使用SM2公钥加密SM4秘钥&#xff0c;获得密文使用SM4秘钥加密数据将密文和加密数据传输至后端…...

JeecgBoot入门

最近在了解低代码平台&#xff0c;其中关注到gitee上开源项目JeecgBoot&#xff0c;JeecgBoot官方也有比较完整的入门教学文档&#xff0c;这里我们将耕者官方教程学习&#xff0c;并将其记录下来。 一、项目简介 JeecgBoot 是一款基于代码生成器的低代码开发平台拥有零代码能力…...

用 Vue.js 打造炫酷的动态数字画廊:展示学生作品的创意之旅

✅作者简介&#xff1a;2022年博客新星 第八。热爱国学的Java后端开发者&#xff0c;修心和技术同步精进。 &#x1f34e;个人主页&#xff1a;Java Fans的博客 &#x1f34a;个人信条&#xff1a;不迁怒&#xff0c;不贰过。小知识&#xff0c;大智慧。 &#x1f49e;当前专栏…...

【YOLO学习】YOLOv8改进举例

文章目录 1. ODConv1.1 修改1.2 原yaml文件1.3 修改yaml文件样式11.4 修改yaml文件样式2 2. DAT3. 在train下修改模型 1. ODConv 1.1 修改 1. 在ultralytics/nn/models里创建ODConv.py文件。 2. 在ultralytics/nn/task.py中导入from .modules.ODConv import C2f_ODConv,ODConv…...

文心一言 VS 讯飞星火 VS chatgpt (383)-- 算法导论24.5 3题

三、对引理 24.10 的证明进行改善&#xff0c;使其可以处理最短路径权重为 ∞ ∞ ∞ 和 − ∞ -∞ −∞ 的情况。引理 24.10(三角不等式)的内容是&#xff1a;设 G ( V , E ) G(V,E) G(V,E) 为一个带权重的有向图&#xff0c;其权重函数由 w : E → R w:E→R w:E→R 给出&…...

【AIGC】如何通过ChatGPT轻松制作个性化GPTs应用

博客主页&#xff1a; [小ᶻZ࿆] 本文专栏: AIGC | GPTs应用实例 文章目录 &#x1f4af;前言&#x1f4af;什么是GPTsGPTs的工作原理GPTs的优势GPTs的应用前景总结 &#x1f4af;创建GPTS应用的基本流程进入GPTs创建界面方式一&#xff1a;按照引导完成生成创建GPTs方式二…...

利用最小二乘法找圆心和半径

#include <iostream> #include <vector> #include <cmath> #include <Eigen/Dense> // 需安装Eigen库用于矩阵运算 // 定义点结构 struct Point { double x, y; Point(double x_, double y_) : x(x_), y(y_) {} }; // 最小二乘法求圆心和半径 …...

使用docker在3台服务器上搭建基于redis 6.x的一主两从三台均是哨兵模式

一、环境及版本说明 如果服务器已经安装了docker,则忽略此步骤,如果没有安装,则可以按照一下方式安装: 1. 在线安装(有互联网环境): 请看我这篇文章 传送阵>> 点我查看 2. 离线安装(内网环境):请看我这篇文章 传送阵>> 点我查看 说明&#xff1a;假设每台服务器已…...

大数据零基础学习day1之环境准备和大数据初步理解

学习大数据会使用到多台Linux服务器。 一、环境准备 1、VMware 基于VMware构建Linux虚拟机 是大数据从业者或者IT从业者的必备技能之一也是成本低廉的方案 所以VMware虚拟机方案是必须要学习的。 &#xff08;1&#xff09;设置网关 打开VMware虚拟机&#xff0c;点击编辑…...

如何将联系人从 iPhone 转移到 Android

从 iPhone 换到 Android 手机时&#xff0c;你可能需要保留重要的数据&#xff0c;例如通讯录。好在&#xff0c;将通讯录从 iPhone 转移到 Android 手机非常简单&#xff0c;你可以从本文中学习 6 种可靠的方法&#xff0c;确保随时保持连接&#xff0c;不错过任何信息。 第 1…...

Axios请求超时重发机制

Axios 超时重新请求实现方案 在 Axios 中实现超时重新请求可以通过以下几种方式&#xff1a; 1. 使用拦截器实现自动重试 import axios from axios;// 创建axios实例 const instance axios.create();// 设置超时时间 instance.defaults.timeout 5000;// 最大重试次数 cons…...

mysql已经安装,但是通过rpm -q 没有找mysql相关的已安装包

文章目录 现象&#xff1a;mysql已经安装&#xff0c;但是通过rpm -q 没有找mysql相关的已安装包遇到 rpm 命令找不到已经安装的 MySQL 包时&#xff0c;可能是因为以下几个原因&#xff1a;1.MySQL 不是通过 RPM 包安装的2.RPM 数据库损坏3.使用了不同的包名或路径4.使用其他包…...

Angular微前端架构:Module Federation + ngx-build-plus (Webpack)

以下是一个完整的 Angular 微前端示例&#xff0c;其中使用的是 Module Federation 和 npx-build-plus 实现了主应用&#xff08;Shell&#xff09;与子应用&#xff08;Remote&#xff09;的集成。 &#x1f6e0;️ 项目结构 angular-mf/ ├── shell-app/ # 主应用&…...

C++.OpenGL (14/64)多光源(Multiple Lights)

多光源(Multiple Lights) 多光源渲染技术概览 #mermaid-svg-3L5e5gGn76TNh7Lq {font-family:"trebuchet ms",verdana,arial,sans-serif;font-size:16px;fill:#333;}#mermaid-svg-3L5e5gGn76TNh7Lq .error-icon{fill:#552222;}#mermaid-svg-3L5e5gGn76TNh7Lq .erro…...

CRMEB 中 PHP 短信扩展开发:涵盖一号通、阿里云、腾讯云、创蓝

目前已有一号通短信、阿里云短信、腾讯云短信扩展 扩展入口文件 文件目录 crmeb\services\sms\Sms.php 默认驱动类型为&#xff1a;一号通 namespace crmeb\services\sms;use crmeb\basic\BaseManager; use crmeb\services\AccessTokenServeService; use crmeb\services\sms\…...

Git常用命令完全指南:从入门到精通

Git常用命令完全指南&#xff1a;从入门到精通 一、基础配置命令 1. 用户信息配置 # 设置全局用户名 git config --global user.name "你的名字"# 设置全局邮箱 git config --global user.email "你的邮箱example.com"# 查看所有配置 git config --list…...