基于MATLAB的图像拼接技术
- 实验名称:基于MATLAB的图像拼接技术
- 实验目的:利用图像拼接技术得到超宽视角的图像,用来虚拟实际场景。
- 实验原理:
基于相位相关的图像拼接技术是一种基于频域的方法,通过求得图像在频域上是相位相关特点来找到特征位置,从而进行图像拼接。其基本原理是基于傅氏功率谱的相关技术。该方法仅利用互功率谱中的相位信息进行图像配准,对图像间的亮度变化不敏感,而且所获得的相关峰尖突出,具有一定的鲁棒性和较高的配准精度。
基于相位相关法进行图像拼接的基本原理如下:假设f(x,y)表示尺寸 为M*N的图像,该函数的二维离散傅里叶变换(DFT)为:
b=imread('8.jpg');
figure
imshow(a);
figure
imshow(b);
imwrite(b,'160.jpg');
IMG={a,b}; %将图片存为元胞结构
num=size(IMG,2); %计算图片个数
move_ht=0; %累计平移量初值
move_wd=0;
for count=1:num-1
input1=IMG{count}; %读取图象
input11=imresize(rgb2gray(input1),[300,200]); %将图象转为灰度图像
input2=IMG{count+1};
input12=imresize(rgb2gray(input2),[300,200]);
F1=fft2(double(input11)); %二维傅里叶变换
F2=fft2(double(input12));
pdm=exp(1i*(angle(F1)-angle(F2))); %求互功率谱
cps=real(ifft2(pdm)); %傅里叶反变换,取冲激函数的实部
[i1,j1]=find(cps==max(max(cps))); %需找峰值点
HtTrans=i1-1; %得到平移量
WdTrans=j1-1;
if(i1>size(input2,1)/2)
HtTrans=HtTrans-size(cps,1);
end
if(j1>size(input2,2)/2)
WdTrans=WdTrans-size(cps,2);
end
move_ht=HtTrans; %最终平移量
move_wd=WdTrans;
ht=move_ht;wd=move_wd;
move_ht=move_ht+ht; %计算累计平移量
move_wd=move_wd+wd;
if count==1 %拼接图像
coimage=my_move(input11,input12,move_ht,move_wd);
else
coimage=my_move(coimage,imput12,move_ht,move_wd);
end
end
coimage1=coimage(15:size(coimage,1)-12,:); %切割图像
figure
imshow(uint8(coimage));
toc
time=toc
imwrite(uint8(coimage),'161.jpg');
function coimage=my_move(input1,input2,move_ht,move_wd)
%根据平移量拼接图像
total_ht=max(size(input1,1),(abs(move_ht)+size(input2,1)));
total_wd=max(size(input1,2),(abs(move_wd)+size(input2,2)));
combImage=zeros(total_ht,total_wd); %按照总大小建立矩阵
regimg1=zeros(total_ht,total_wd); %配准模板1
regimg2=zeros(total_ht,total_wd); %配准模板2
%根据平移量选择配准方式即选择拼接图像的位置
if((move_ht>=0)&(move_wd>=0))
regimg1(1:size(input1,1),1:size(input1,2))=input1;
regimg2((1+move_ht):(move_ht+size(input2,1)),(1+move_wd):(move_wd+size(input2,2)))=input2;
elseif((move_ht<0)&(move_wd<0))
regimg2(1:size(input2,1),1:size(input2,2))=input2;
regimg1((1+abs(move_ht)):(abs(move_ht)+size(input1,1)),(1+abs(move_wd)):(abs(move_wd)+size(input1,2)))=input1;
elseif((move_ht>=0)&(move_wd<0))
regimg2((move_ht+1):(move_ht+size(input2,1)),1:size(input2,2))=input2;
regimg1(1:size(input1,1),(abs(move_wd)+1):(abs(move_wd)+size(input1,2)))=input1;
elseif((move_ht<0)&(move_wd>=0))
regimg1((abs(move_ht)+1):(abs(move_ht)+size(input1,1)),1:size(input1,2))=input1;
regimg2(1:size(input2,1),(move_wd+1):(move_wd+size(input2,2)))=input2;
end
if sum(sum(regimg1==0))>sum(sum(regimg2==0)) %选择零点较多的配准图像为拼接图像
plant=regimg1; bleed=regimg2;
else
plant=regimg2; bleed=regimg1;
end
combImage=plant; %得到拼接图像
for p=1:total_ht
for q=1:total_wd
if(combImage(p,q)==0)
combImage(p,q)=bleed(p,q); %将拼接图像的零点用另一幅图覆盖
end
end
end
%%
function [move_ht,move_wd]=my_trans(input1,input2) %计算两幅图像平移量
F1=fft2(input1); %二维傅里叶变换
F2=fft2(input2);
pdm=exp(1i*(angle(F1)-angle(F2))); %求互功率谱
cps=real(ifft2(pdm)); %傅里叶反变换,取冲激函数的实部
[i1,j1]=find(cps==max(max(cps))); %需找峰值点
HtTrans=i1-1; %得到平移量
WdTrans=j1-1;
if(i1>size(input2,1)/2)
HtTrans=HtTrans-size(cps,1);
end
if(j1>size(input2,2)/2)
WdTrans=WdTrans-size(cps,2);
end
move_ht=HtTrans; %最终平移量
move_wd=WdTrans;
end
五 运行结果
相关文章:

基于MATLAB的图像拼接技术
实验名称:基于MATLAB的图像拼接技术实验目的:利用图像拼接技术得到超宽视角的图像,用来虚拟实际场景。实验原理: 基于相位相关的图像拼接技术是一种基于频域的方法,通过求得图像在频域上是相位相关特点来找到特征位置…...
ComfyUI 快速入门(环境搭建)
ComfyUI 是一个现代化、灵活的用户界面(UI)工具,专为 AI 模型和深度学习框架设计,能够快速实现可视化操作和定制化界面。在本教程中,我们将介绍如何在本地机器上快速搭建 ComfyUI 环境,帮助你开始使用这一工…...

将HTML项目上传至Gitee仓库(详细教程)
1.登录giett giett地址链接:Gitee - 基于 Git 的代码托管和研发协作平台 2.新建一个giett仓库 创建后得到远程仓库: 3、在本地项目文件夹右击鼠标点击 Open Git Bash Here 4、输入命令 命令:git init,这个目录变成git可以管理的仓库,会出…...
如何应对Oracle SQL语句的数据去重问题,应该考虑哪几个方面?
引言 在数据管理和数据库设计中,数据去重是一个重要的课题。随着信息技术的快速发展,数据的产生速度和数量都在急剧增加,如何有效地管理和维护这些数据成为了一个亟待解决的问题。 数据去重不仅可以减少存储空间的占用,还可以提高数据查询的效率,确保数据的准确性和一致…...
论负载均衡技术在Web系统中的应用论文
一、概要叙述软件项目及其主要工作 在2023年,我有幸参与了某公司电子商务平台的研发项目,担任系统架构设计师一职。该项目旨在构建一个高性能、高可用性的电子商务平台,以支撑公司日益增长的在线业务需求。作为系统架构设计的核心成员&#…...

NumPy 数据类型
1.常用 NumPy 基本类型 (1)bool_:布尔型数据类型(True 或者 False) (2)int_:默认的整数类型(类似C 语言long,int32 或 int64) (3&a…...

JavaScript——(4)
【DOM】 一、DOM基本概念 DOM(Document Object Model,文档对象模型)是 JavaScript 操作 HTML 文档的接口,使文档操作变得非常优雅、简便。 DOM 最大的特点就是将 HTML 文档表示为 “节点树”。 DOM 元素/节点:就是…...
每日一练 | DHCP Relay(DHCP 中继)
01 真题题目 DHCP Relay 又称为 DHCP 中继,下列关于 DHCP Relay 的说法正确的是(多选): A. DHCP 协议多采用广播报文,如果出现多个子网则无法穿越,所以需要 DHCP Relay 设备。 B. DHCP Relay 一定是一台交…...

`psdparse`:解锁Photoshop PSD文件的Python密钥
文章目录 psdparse:解锁Photoshop PSD文件的Python密钥背景:为何选择psdparse?psdparse是什么?如何安装psdparse?简单函数使用方法应用场景常见Bug及解决方案总结 psdparse:解锁Photoshop PSD文件的Python密…...
考研要求掌握的C语言程度(插入排序)
插入排序是啥类型的排序 插入类型的 插入排序经常用在啥类型场景下 用在有序序列下的基础上插入新数据 时间复杂度分析 如果是有序的基础下,最好的时间复杂度是O(n); 普通情况下是O(n^2) 插入排序的原理是啥&am…...
mybatis源码解析-sql执行流程
1 执行器的创建 1. SimpleExecutor 描述:最基本的执行器,每次查询都会创建新的语句对象,并且不会缓存任何结果。 特点: 每次查询都会创建新的 PreparedStatement 对象。 不支持一级缓存。 适用于简单的查询操作,不…...

Golang | Leetcode Golang题解之第538题把二叉搜索树转换为累加树
题目: 题解: func getSuccessor(node *TreeNode) *TreeNode {succ : node.Rightfor succ.Left ! nil && succ.Left ! node {succ succ.Left}return succ }func convertBST(root *TreeNode) *TreeNode {sum : 0node : rootfor node ! nil {if n…...

【linux】HTTPS 协议原理
1. 了解 HTTPS 协议原理 (一)认识 HTTPS HTTPS 也是一种应用层协议,是在 HTTP 协议的基础上引入了一个加密层 因为 HTTP协议的内容都是按照文本的方式进行传输的,这个过程中,可能会出现一些篡改的情况 (…...

安利一款开源企业级的报表系统SpringReport
SpringReport是一款企业级的报表系统,支持在线设计报表,并绑定动态数据源,无需写代码即可快速生成想要的报表,可以支持excel报表和word报表两种格式,同时还可以支持excel多人协同编辑,后续考虑实现大屏设计…...
数据安全-接口数据混合加密笔记
接口数据传输安全设计方案 采用非对称加密对称加密混合方式,接口混合加、解密过程梳理: 后端准备sm2公钥和私钥后端将SM2公钥传输到前端前端生成SM4密钥前端使用SM2公钥加密SM4秘钥,获得密文使用SM4秘钥加密数据将密文和加密数据传输至后端…...

JeecgBoot入门
最近在了解低代码平台,其中关注到gitee上开源项目JeecgBoot,JeecgBoot官方也有比较完整的入门教学文档,这里我们将耕者官方教程学习,并将其记录下来。 一、项目简介 JeecgBoot 是一款基于代码生成器的低代码开发平台拥有零代码能力…...

用 Vue.js 打造炫酷的动态数字画廊:展示学生作品的创意之旅
✅作者简介:2022年博客新星 第八。热爱国学的Java后端开发者,修心和技术同步精进。 🍎个人主页:Java Fans的博客 🍊个人信条:不迁怒,不贰过。小知识,大智慧。 💞当前专栏…...

【YOLO学习】YOLOv8改进举例
文章目录 1. ODConv1.1 修改1.2 原yaml文件1.3 修改yaml文件样式11.4 修改yaml文件样式2 2. DAT3. 在train下修改模型 1. ODConv 1.1 修改 1. 在ultralytics/nn/models里创建ODConv.py文件。 2. 在ultralytics/nn/task.py中导入from .modules.ODConv import C2f_ODConv,ODConv…...

文心一言 VS 讯飞星火 VS chatgpt (383)-- 算法导论24.5 3题
三、对引理 24.10 的证明进行改善,使其可以处理最短路径权重为 ∞ ∞ ∞ 和 − ∞ -∞ −∞ 的情况。引理 24.10(三角不等式)的内容是:设 G ( V , E ) G(V,E) G(V,E) 为一个带权重的有向图,其权重函数由 w : E → R w:E→R w:E→R 给出&…...

【AIGC】如何通过ChatGPT轻松制作个性化GPTs应用
博客主页: [小ᶻZ࿆] 本文专栏: AIGC | GPTs应用实例 文章目录 💯前言💯什么是GPTsGPTs的工作原理GPTs的优势GPTs的应用前景总结 💯创建GPTS应用的基本流程进入GPTs创建界面方式一:按照引导完成生成创建GPTs方式二…...

基于ASP.NET+ SQL Server实现(Web)医院信息管理系统
医院信息管理系统 1. 课程设计内容 在 visual studio 2017 平台上,开发一个“医院信息管理系统”Web 程序。 2. 课程设计目的 综合运用 c#.net 知识,在 vs 2017 平台上,进行 ASP.NET 应用程序和简易网站的开发;初步熟悉开发一…...

《从零掌握MIPI CSI-2: 协议精解与FPGA摄像头开发实战》-- CSI-2 协议详细解析 (一)
CSI-2 协议详细解析 (一) 1. CSI-2层定义(CSI-2 Layer Definitions) 分层结构 :CSI-2协议分为6层: 物理层(PHY Layer) : 定义电气特性、时钟机制和传输介质(导线&#…...
【磁盘】每天掌握一个Linux命令 - iostat
目录 【磁盘】每天掌握一个Linux命令 - iostat工具概述安装方式核心功能基础用法进阶操作实战案例面试题场景生产场景 注意事项 【磁盘】每天掌握一个Linux命令 - iostat 工具概述 iostat(I/O Statistics)是Linux系统下用于监视系统输入输出设备和CPU使…...
Qwen3-Embedding-0.6B深度解析:多语言语义检索的轻量级利器
第一章 引言:语义表示的新时代挑战与Qwen3的破局之路 1.1 文本嵌入的核心价值与技术演进 在人工智能领域,文本嵌入技术如同连接自然语言与机器理解的“神经突触”——它将人类语言转化为计算机可计算的语义向量,支撑着搜索引擎、推荐系统、…...

SpringBoot+uniapp 的 Champion 俱乐部微信小程序设计与实现,论文初版实现
摘要 本论文旨在设计并实现基于 SpringBoot 和 uniapp 的 Champion 俱乐部微信小程序,以满足俱乐部线上活动推广、会员管理、社交互动等需求。通过 SpringBoot 搭建后端服务,提供稳定高效的数据处理与业务逻辑支持;利用 uniapp 实现跨平台前…...

有限自动机到正规文法转换器v1.0
1 项目简介 这是一个功能强大的有限自动机(Finite Automaton, FA)到正规文法(Regular Grammar)转换器,它配备了一个直观且完整的图形用户界面,使用户能够轻松地进行操作和观察。该程序基于编译原理中的经典…...
Web中间件--tomcat学习
Web中间件–tomcat Java虚拟机详解 什么是JAVA虚拟机 Java虚拟机是一个抽象的计算机,它可以执行Java字节码。Java虚拟机是Java平台的一部分,Java平台由Java语言、Java API和Java虚拟机组成。Java虚拟机的主要作用是将Java字节码转换为机器代码&#x…...

基于Java+VUE+MariaDB实现(Web)仿小米商城
仿小米商城 环境安装 nodejs maven JDK11 运行 mvn clean install -DskipTestscd adminmvn spring-boot:runcd ../webmvn spring-boot:runcd ../xiaomi-store-admin-vuenpm installnpm run servecd ../xiaomi-store-vuenpm installnpm run serve 注意:运行前…...
Qt 事件处理中 return 的深入解析
Qt 事件处理中 return 的深入解析 在 Qt 事件处理中,return 语句的使用是另一个关键概念,它与 event->accept()/event->ignore() 密切相关但作用不同。让我们详细分析一下它们之间的关系和工作原理。 核心区别:不同层级的事件处理 方…...

Ubuntu系统复制(U盘-电脑硬盘)
所需环境 电脑自带硬盘:1块 (1T) U盘1:Ubuntu系统引导盘(用于“U盘2”复制到“电脑自带硬盘”) U盘2:Ubuntu系统盘(1T,用于被复制) !!!建议“电脑…...