当前位置: 首页 > news >正文

Python OpenCV 图像改变

更改图像数据

通过 改像素点 或者 切片的区域

import cv2
import numpy as np	
img = cv2.imread("image.jpg")
print(img[3,5])            # 显示某位置(行3列5)的像素值( 如 [53 34 29] 它是有三通道 B G R 组成) 
img[3,5] = (0,0,255)       # 更改该位置的像素img[0:100,100:200,0]   = 255 # 更改区域(0~100行 100~200列) B通道的值为255
img[100:200,200:300,1] = 255 
img[200:300,300:400,2] = 255  	 
cv2.imshow('changeData',img)  # 显示可看到图像有 蓝色 绿色 红色的方块区域
cv2.waitKey(2000) 
图像通道分离
#---方式一(opencv自带的函数)
import cv2
import numpy as np	
img = cv2.imread("image.jpg")  
b, g, r = cv2.split(img)  # 分离为blue,green ,red 三色通道(注:opencv 通道顺序是BGR,而不是主流的RGB)# img = cv2.cvtColor(img,cv2.COLOR_BGR2RGB)  调整通道顺序为RGB# 只分离一个 b = cv2.split(img)[0]   0:b 1:g 2:r                          
cv2.imshow("Blue", r)  
print(r.shape)            # (240,320)
cv2.imshow("Red", g)  
cv2.imshow("Green", b)  
cv2.waitKey(0)#---方式二(numpy的函数)
import cv2
import numpy as np	
img = cv2.imread("image.jpg")  
print(img.shape)  
r = np.zeros((img.shape[0],img.shape[1]), dtype=img.dtype)   #//创建numpy空间
r[:,:] = img[:,:,2]    #//拷贝r通道的数据cv2.imshow("Red", r)  
cv2.waitKey(0)  
图像通道合并
import cv2
import numpy as np		
img = cv2.imread("image.jpg")
b, g, r = cv2.split(img)
merged = cv2.merge([b,g,r])  # 合并通道,如果换成 [r, g, b]就和原图像不一样了
print(merged.shape)      # (240, 320, 3)   合并后顺序是(高度 宽度 通道数)
cv2.imshow("Merged", merged)
cv2.waitKey(0)
图像拼接
import os
import cv2
import numpy as npdef mergePic(files):baseimg= cv2.imread(files[0])for file in files[1:]:  # 遍历除第一个外的numpyimg=cv2.imread(file)baseimg=np.append(baseimg,img,axis=1)   # 横向追加图像(axis=0时为纵向)cv2.imwrite('mergeCv2.png',baseimg)path = "./pic/" # 注:该路径下的图像,必须是相同格式,尺寸的图像
images = []  #先存储所有的图像的名称
for root, dirs, files in os.walk(path):for f in files :images.append(path+f)
print(images,len(images))mergePic(images)
图像混合(虚化后混合)
import cv2
import numpy as np
img1=cv2.imread('image.jpg')
img2=cv2.imread('opencv_logo.jpg')
img2 = cv2.resize(img2,(img1.shape[1],img1.shape[0])) # 注意opencv的resize和shape是反的 
print(img1.shape,img1.size,img1.dtype)
print(img2.shape,img2.size,img2.dtype)dst=cv2.addWeighted(img1,0.7,img2,0.3,0) # 注:不同尺寸会报错,可采用resize或roi方式处理
# 0.7/0.3为图像混合占的比重,在0通道
cv2.imshow('dst',dst)
cv2.waitKey(0)
缩放、旋转和裁剪
import cv2# 打开图像
image = cv2.imread('example.jpg')# 缩放图像
scaled_image = cv2.resize(image, (500, 500))# 旋转图像
rotated_image = cv2.rotate(image, cv2.ROTATE_90_CLOCKWISE)# 裁剪图像
cropped_image = image[100:300, 100:300]# 显示变换后的图像
cv2.imshow('Scaled Image', scaled_image)
cv2.imshow('Rotated Image', rotated_image)
cv2.imshow('Cropped Image', cropped_image)
cv2.waitKey(0)
cv2.destroyAllWindows()
图像平移
import cv2
import numpy as np
import matplotlib.pyplot as pltimg = cv2.imread('image.jpg')
H = np.float32([[1,0,100], # 创建变换矩阵,100:沿x轴移动距离 50:沿y轴移动距离[0,1,50]])
rows,cols = img.shape[:2]  # 取图片的行数和列数(开始到2之间,即shape[0] shape[1])
newImg = cv2.warpAffine(img,H,(rows,cols)) # 仿射变换# img:变换前图像# H:变换矩阵# (rows,cols)):变换后的大小
plt.subplot(121) # 子图 1行2列1象限
plt.imshow(img)
plt.subplot(122) # 子图 1行2列2象限
plt.imshow(newImg)
plt.show()       # 显示 matplotlib图

在这里插入图片描述
cv2.warpAffine() 是 OpenCV 中用于执行仿射变换的函数之一。它可以用来对图像进行平移、旋转、缩放等操作

import cv2
import numpy as np# 读取图像
image = cv2.imread('input_image.jpg')# 定义平移矩阵,这里将图像向右平移100像素,向下平移50像素
tx = 100
ty = 50
translation_matrix = np.float32([[1, 0, tx],[0, 1, ty]])# 执行仿射变换
translated_image = cv2.warpAffine(image, translation_matrix, (image.shape[1], image.shape[0]))# 显示原始图像和平移后的图像
cv2.imshow('Original Image', image)
cv2.imshow('Translated Image', translated_image)
cv2.waitKey(0)
cv2.destroyAllWindows()

在这里插入图片描述

图像增强

图像增强是指通过调整图像的亮度、对比度、饱和度等参数来改善图像质量。

使用OpenCV库的cv2.convertScaleAbs()函数来增强图像的对比度。

import cv2# 打开图像
image = cv2.imread('example.jpg')# 增强对比度
enhanced_image = cv2.convertScaleAbs(image, alpha=1.5, beta=0)# 显示增强后的图像
cv2.imshow('Enhanced Image', enhanced_image)
cv2.waitKey(0)
cv2.destroyAllWindows()
图像复原

图像复原是指通过去除噪声、模糊等失真来恢复图像的原始质量。

使用OpenCV库的cv2.fastNlMeansDenoisingColored()函数来去除图像中的噪声。

import cv2# 打开图像
image = cv2.imread('noisy_image.jpg')# 去除噪声
denoised_image = cv2.fastNlMeansDenoisingColored(image, None, 10, 10, 7, 21)# 显示去除噪声后的图像
cv2.imshow('Denoised Image', denoised_image)
cv2.waitKey(0)
cv2.destroyAllWindows()
图像旋转
import cv2
import matplotlib.pyplot as pltimg = cv2.imread('image.jpg')
rows,cols = img.shape[:2]M = cv2.getRotationMatrix2D((cols/2,rows/2),45,1) # 2D矩阵旋转变换# 参1:旋转中心 参2:旋转角度  参3:缩放比例
newImg = cv2.warpAffine(img,M,(rows,cols))  # 仿射变换plt.subplot(121)
plt.imshow(img)
plt.subplot(122)
plt.imshow(newImg)	
plt.show()
图像拉伸
import cv2
import numpy as np
import matplotlib.pyplot as pltimg = cv2.imread('image.jpg')
rows,cols = img.shape[:2]pts1 = np.float32([[50,50],[200,50],[50,200]])   # 变换前位置(通过三个点 来确定)
pts2 = np.float32([[10,100],[200,50],[100,250]]) # 变换后位置(通过三个点 来确定)
M = cv2.getAffineTransform(pts1, pts2) # 仿射变换(参1:变换前位置  参2:变换后位置)res = cv2.warpAffine(img,M,(rows,cols))
plt.subplot(121)
plt.imshow(img)
plt.subplot(122)
plt.imshow(res)
plt.show()
图像滤波

图像滤波是图像处理中的一个基础任务,用于去除图像中的噪声和细节,增强感兴趣的结构。
使用OpenCV库的cv2.fastNlMeansDenoisingColored()函数来去除图像中的噪声。

import cv2# 打开图像
image = cv2.imread('noisy_image.jpg')# 去除噪声
denoised_image = cv2.fastNlMeansDenoisingColored(image, None, 10, 10, 7, 21)# 显示去除噪声后的图像
cv2.imshow('Denoised Image', denoised_image)
cv2.waitKey(0)
cv2.destroyAllWindows()
图像特征提取

图像特征提取是从图像中提取有用的信息,如边缘、角点、形状等。这些特征可以用于图像识别、图像检索等。

使用OpenCV库的cv2.Canny()函数来提取图像的边缘特征。

import cv2# 打开图像
image = cv2.imread('image_with_edges.jpg')# 应用边缘检测
edges = cv2.Canny(image, 100, 200)# 显示边缘检测后的图像
cv2.imshow('Edges', edges)
cv2.waitKey(0)
cv2.destroyAllWindows()
图像分割

图像分割是将图像分成多个部分的过程,每个部分代表图像中的一个对象或区域。

使用OpenCV库的cv2.inRange()函数来根据颜色对图像进行分割。

import cv2# 打开图像
image = cv2.imread('colorful_image.jpg')# 创建颜色范围
lower_red = (0, 50, 50)
upper_red = (10, 255, 255)# 应用颜色分割
mask = cv2.inRange(image, lower_red, upper_red)# 显示分割后的图像
cv2.imshow('Mask', mask)
cv2.waitKey(0)
cv2.destroyAllWindows()

相关文章:

Python OpenCV 图像改变

更改图像数据 通过 改像素点 或者 切片的区域 import cv2 import numpy as np img cv2.imread("image.jpg") print(img[3,5]) # 显示某位置(行3列5)的像素值( 如 [53 34 29] 它是有三通道 B G R 组成) img[3,5] (0,0,255) # 更改该位置的像素…...

k8s按需创建 PV和创建与使用 PVC

在 Kubernetes 中,PersistentVolume(PV)和 PersistentVolumeClaim(PVC)用于管理存储资源。PV 是集群中的存储资源,而 PVC 是 Pod 请求 PV 的方式。按需创建 PV 通常使用 StorageClass 实现动态存储分配&…...

揭秘云计算 | 2、业务需求推动IT发展

揭秘云计算 | 1、云从哪里来?-CSDN博客https://blog.csdn.net/Ultipa/article/details/143430941?spm1001.2014.3001.5502 书接上文: 过去几十年间IT行业从大型主机过渡到客户端/服务器,再过渡到现如今的万物互联,IT可把控的资…...

【系统面试篇】进程与线程类(2)(笔记)——进程调度、中断、异常、用户态、核心态

目录 一、相关面试题 1. 进程的调度算法有哪些? 调度原则 (1)先来先服务调度算法 (2)最短作业优先调度算法 (3)高响应比优先调度算法 (4)时间片轮转调度算法 &am…...

基于MySQL的企业专利数据高效查询与统计实现

背景 在进行产业链/产业评估工作时,我们需要对企业的专利进行评估,其中一个重要指标是统计企业每一年的专利数量。本文基于MySQL数据库,通过公司名称查询该公司每年的专利数,实现了高效的专利数据统计。 流程 项目流程概述如下&…...

热成像手机VS传统热成像仪:AORO A23为何更胜一筹?

热成像技术作为一种非接触式测温方法,广泛应用于石油化工巡检、电力巡检、应急救援、医疗、安防等“危、急、特”场景。提及热成像设备,人们往往会首先想到价格高昂、操作复杂且便携性有限的热成像仪。但是,随着技术的不断进步,市…...

Spring IoC——依赖注入

1. 依赖注入的介绍 DI,也就是依赖注入,在容器中建立的 bean (对象)与 bean 之间是有依赖关系的,如果直接把对象存在 IoC 容器中,那么就都是一个独立的对象,通过建立他们的依赖关系,…...

Linux 中,flock 对文件加锁

在Linux中,flock是一个用于对文件加锁的实用程序,它可以帮助协调多个进程对同一个文件的访问,避免出现数据不一致或冲突等问题。以下是对flock的详细介绍: 基本原理 flock通过在文件上设置锁来控制多个进程对该文件的并发访问。…...

CentOS下载ISO镜像的方法

步骤 1:访问CentOS官方网站 首先,打开浏览器,输入CentOS的官方网站地址:Download 在网站上找到ISO镜像的下载链接,通常位于“Downloads”或类似的页面上。 选择所需的CentOS版本和架构(如x86_64&#xf…...

Node.js 入门指南:从零开始构建全栈应用

​🌈个人主页:前端青山 🔥系列专栏:node.js篇 🔖人终将被年少不可得之物困其一生 依旧青山,本期给大家带来node.js篇专栏内容:node.js-入门指南:从零开始构建全栈应用 前言 大家好,我是青山。作…...

MYSQL 真实高并发下的死锁

https://pan.baidu.com/s/1nM3VQdbkNZhnK-wWboEYxA?pwdvwu6 下面是风控更新语句 ------------------------ LATEST DETECTED DEADLOCK ------------------------ 2023-08-04 01:00:10 140188779017984 *** (1) TRANSACTION: TRANSACTION 895271870, ACTIVE 0 sec starting …...

Zookeeper 简介 | 特点 | 数据存储

1、简介 zk就是一个分布式文件系统,不过存储数据的量极小。 1. zookeeper是一个为分布式应用程序提供的一个分布式开源协调服务框架。是Google的Chubby的一个开源实现,是Hadoop和Hbase的重要组件。主要用于解决分布式集群中应用系统的一致性问题。 2. 提…...

设计模式之结构型模式---装饰器模式

目录 1.概述2.类图3.应用场景及优缺点3.1 应用场景3.2 优缺点3.2.1 优点3.2.2 缺点 4.实现4.1 案例类图4.2 代码实现4.2.1 定义抽象构建角色4.2.2 定义具体构建角色4.2.3 定义抽象装饰器角色4.2.4 定义具体装饰角色4.2.5 装饰器模式的使用 1.概述 装饰器模式是指在不改变现有对…...

Android Pair

Pair在Android中是一种轻量级的工具类,并不是严格意义上的数据结构。 数据结构是一组有组织的方式来存储和管理数据的方式,如数组、链表、栈、队列、树、图等,它们有自己的特性和操作规则。而Pair更像是一个简单的封装,用于在需要…...

华为荣耀曲面屏手机下面空白部分设置颜色的方法

荣耀部分机型下面有一块空白区域&#xff0c;如下图红框部分 设置这部分的颜色需要在themes.xml里面设置navigationBarColor属性 <item name"android:navigationBarColor">android:color/white</item>...

《C#语法一篇通》,有20万字,需8MB字节,宜48小时阅读,没准会继续完善

本文摘录了C#语法的主要内容&#xff0c;接近20万字。 所有鸡汤的味道都等于马尿&#xff01; 如果你相信任何所谓的鸡汤文章&#xff0c;智商堪忧。 计算机语言没有”好不好“之说&#xff0c;骗子才会告诉你哪个语言好&#xff0c;学好任何一本基础语言&#xff08;C&#…...

嵌入式硬件工程师的职业发展规划

嵌入式硬件工程师可以按照以下阶段进行职业发展规划&#xff1a; 1. **初级阶段&#xff08;1-3 年&#xff09; ** - **技术学习与积累**&#xff1a; **电路基础强化**&#xff1a; 深入学习模拟电路和数字电路知识&#xff0c;能够熟练分析和设计基本的电路&#xff0c;…...

QT for android 问题总结(QT 5.15.2)

1.配置好的sdk&#xff0c;显示设置失败 Android SDK Command-line Tools run. Android Platform-Tools installed. Command-line Tools (latest) 版本过高导致报错 &#xff0c;下载一个低版本的latest &#xff0c;替换掉之前latest中的文件。即可&#xff0c;latest 路径如…...

PyTorch实战-手写数字识别-MLP模型

1 需求 包懂&#xff0c;40分钟掌握PyTorch深度学习框架&#xff0c;对应神经网络算法理论逐行讲解用PyTorch实现图像分类代码_哔哩哔哩_bilibili 10分钟入门神经网络 PyTorch 手写数字识别_哔哩哔哩_bilibili pytorch tutorial: PyTorch 手写数字识别 教程代码 从零设计并训…...

(附项目源码)Java开发语言,基于Java的高校实验室教学管理系统的设计与开发 50,计算机毕设程序开发+文案(LW+PPT)

摘 要 随着高校实验室教学与管理的复杂性增加&#xff0c;传统的手动管理系统已经无法满足日益增长的需求。实验室教学不仅涉及到学生的教学安排和管理&#xff0c;还需要对实验设备、实验材料、实验室资源等进行有效的调配和管理。而目前实验室教学管理的各项工作&#xff0c;…...

【日常问题排查小技巧-连载】

线上服务CPU飙高排查 先执行 top&#xff0c;找到CPU占用比较高的进程 id&#xff0c;&#xff08;比如 21448&#xff09; jstack 进程 id > show.txt&#xff08;jstack 21448 > show.txt&#xff09; 找到进程中CPU占用比较高的线程&#xff0c;线程 id 转换为 16 进…...

elastic search查找字段的方法

一,比如:elastic search 查找id为“ien9292voewew”的方法 此id为主键id,意思就是唯一id,在ES中是_id, 在 Elasticsearch 中,如果你想要查找特定 ID 的文档,可以使用 _get API。以下是如何通过 RESTful 请求或使用 Python 客户端来查找 ID 为 ien9292voewew 的文档的方…...

MATLAB下的四个模型的IMM例程(CV、CT左转、CT右转、CA四个模型),附下载链接

基于IMM算法的目标跟踪。利用卡尔曼滤波和多模型融合技术&#xff0c;能够在含噪声的环境中提高估计精度&#xff0c;带图像输出 文章目录 概述源代码运行结果代码结构与功能1. 初始化2. 仿真参数设置3. 模型参数设置4. 生成量测数据5. IMM算法初始化6. IMM迭代7. 绘图8. 辅助函…...

无人机之中继通信技术篇

一、定义与原理 无人机中继通信技术是指通过无人机搭载中继设备&#xff0c;将信号从一个地点传输到另一个地点&#xff0c;从而延长通信距离并保持较好的通信质量。其原理类似于传统的中继通信&#xff0c;即在两个终端站之间设置若干中继站&#xff0c;中继站将前站送来的信号…...

阳光保险隐忧浮现:业绩与股价双双而下,张维功能否力挽狂澜?

10月28日晚间&#xff0c;作为国内新生代险企&#xff0c;也是一家赴港上市的保险集团——阳光保险&#xff08;HK:06963&#xff09;一口气对外正式披露了三则财务报告&#xff0c;分别是集团旗下阳光人寿和阳光财险今年前三季度未经审议的财务数据&#xff0c;以及截至三季度…...

【OJ题解】在字符串中查找第一个不重复字符的索引

&#x1f4b5;个人主页: 起名字真南 &#x1f4b5;个人专栏:【数据结构初阶】 【C语言】 【C】 【OJ题解】 目录 1. 引言2. 题目分析示例&#xff1a; 3. 解题思路思路一&#xff1a;双重循环思路二&#xff1a;哈希表 4. C代码实现5. 代码详解6. 时间和空间复杂度分析7. 优化方…...

处理配对和拆分内容 |【python技能树知识点1~2 习题分析】

目录 一、编程语言简史&#xff08;配对&#xff09;题目要求&#xff1a;程序设计&#xff1a; 二、 编程语言发明家&#xff08;拆分&#xff09;题目要求程序实现while和for循环 python技能树知识点中的一些习题练习和分析。熟悉python编程模式和逻辑。 一、编程语言简史&am…...

HBuilderX自定义Vue3页面模版

HBuilderX自定义Vue3页面模版 首先在HBuilderX工具下的任意一个项目添加新建自定义页面模版 新建模版文件&#xff0c;并打开进行编辑 vue3-setup-js.vue文件里填写样式模版&#xff08;根据自己的需要进行修改&#xff09; <template><view class"">&…...

计算机网络——TCP中的流量控制和拥塞控制

TCP中的流量控制和拥塞控制 流量控制 什么是流量控制 如果发送者发送数据过快&#xff0c;接收者来不及接收&#xff0c;那么就会出现分组丢失&#xff0c;为了避免分组丢失&#xff0c;控制发送者的发送速度&#xff0c;使得接收者来得及接收&#xff0c;这就是流量控制。 …...

BFV/BGV全同态加密方案浅析

本文主要为翻译内容&#xff0c;原文地址&#xff1a;Introduction to the BFV encryption scheme、https://www.inferati.com/blog/fhe-schemes-bgv 之前的一篇博客我们翻译了CKKS全同态加密方案的内容&#xff0c;但该篇上下文中有一些知识要点&#xff0c;作者在BFV/BGV中已…...