ComfyUI和Photoshop相结合,PS内实现:文生图,图生图,高清放大,局部重绘,面部修复,设计师福音
本文主要介绍:ComfyUI和Photoshop相结合,一个平台实现:图像生成,放大,局部重绘,面部修复,实时绘画
简直是设计师的福音。
主要包括:
-
Photoshop 的安装以及插件的安装
-
Creative Cloud 安装,Photoshop最新版的安装破解
-
ComfyUI插件在PS中的安装
-
ComfyUI的插件安装,模型下载,工作流配置
-
Photoshop中AI插件的使用
-
文生图
-
图生图
-
局部重绘
-
放大
-
面部修复
Photoshop 的安装以及插件的安装
通过Creative Cloud 安装PS
下载并安装Creative Cloud:【必须得,否则插件无法安装】
https://creativecloud.adobe.com/apps/download/creative-cloud?locale=zh-Hans
注册Adobe账号并登录
破解补丁下载:https://github.com/wangzhenjjcn/AdobeGenp/releases
步骤如下:
ComfyUI插件在PS中的安装
关闭Creative Cloud和PS,下载安装程序以及插件:
ZXP UXP Installer
https://aescripts.com/learn/zxp-installer/
PS 插件
https://raw.githubusercontent.com/NimaNzrii/comfyui-photoshop/main/Install_Plugin/3e6d64e0_PS.ccx
启动PS查看:
注意,可能需要配置一下PS首选项:
ComfyUI的插件安装以及模型下载,工作流配置
comfyui-photoshop 插件安装
插件地址:https://github.com/NimaNzrii/comfyui-photoshop
Manager 内搜索并安装:
然后重启ComfyUI。
其他需要的插件:
-
comfyui-photoshop:https://github.com/NimaNzrii/comfyui-photoshop
-
MTB Nodes:https://github.com/melMass/comfy_mtb
-
Rgthree’s ComfyUI Nodes:https://github.com/rgthree/rgthree-comfy
-
Use Everywhere:https://github.com/chrisgoringe/cg-use-everywhere
ComfyUI-Photoshop 工作流以及模型
工作流
原版 https://openart.ai/workflows/lreWarJbqiYPcDXnD8hh
大模型 也可以选用其他大模型
-
EpicRealism Natural Sin RC1 VAE:
https://civitai.com/api/download/models/143906?type=Model&format=SafeTensor&size=pruned&fp=fp16
-
EpicRealism pure Evolution V5-inpainting
https://civitai.com/api/download/models/134361?type=Model&format=SafeTensor&size=pruned&fp=fp16
Loras
- Detailer Lora https://civitai.com/api/download/models/62833?type=Model&format=SafeTensor
其他模型通过Manager搜索如下关键字进行安装:
-
LCM LoRA SD1.5
-
ControlNet-v1-1 (lineart; fp16)
-
ControlNet-v1-1 (scribble; fp16)
-
ControlNet-v1-1 (inpaint; fp16)
-
4x-UltraSharp
Photoshop中AI插件的使用
Settings
ComfyUI Web
主要是在PS中打开ComfyUI Web界面的,就不用浏览器和PS来回切换了。
Ai Panel
主要功能:
我在原版的基础上增加了如下功能:
-
Codeformer For Face 面部修复
-
GFPGAN For Face 面部修复
-
Upscale By Topaz 放大
-
BiRefNet 抠图
文章结尾有工作流提供下载。
也参考我之前的文章:
-
最强脸部修复模型4剑客:Codeformer,GFPGAN,GPEN,RestoreFormer 在ComfyUI中安装以及对比
-
顶级图片工具TopazPhotoAI在ComfyUI中的使用。放大,锐化,降噪,附最新v3.2汉化学习版
-
最强最快的抠图和扣视频工具BiRefNet,在ComfyUI中的使用
如果需要增加自定义功能,只需要将所需功能放入到组里,然后给组重名个名字即可,如下图:
文生图
PS 新建画布,分辨率推荐在 512-1024 px 之间,选择文生图,6步,然后输入提示词,最后点击渲染。
生成完毕后,点击图片,就可以复制到PS新图层里。
图生图
如下:选择图生图,另外两个分别是带Lineart控制和scribble控制的:
6步,然后输入提示词,点击右侧的重绘幅度,越小越接近原图,最后点击渲染。
同样,点击生成的图片复制到新的图层里。
局部重绘
先用套索工具,选择想要重绘的部分,如下图,然后选择“In-Paint” 重绘,
输入提示词:glasses,最后点击生成:
高清放大
选择如下任意一个即可:
面部修复
PS打开要修复的图像,然后选择以下任意一种进行修复面部
完
所需工作流,请关注公众号:DevOpsAigc云时代
发送指令:ComfyUIPhotoshop
自主获取。
本文转自 https://mp.weixin.qq.com/s/e8gJIs4jdC2rlRqtVUn2Sg,如有侵权,请联系删除。
感兴趣的小伙伴,赠送全套AIGC学习资料,包含AI绘画、AI人工智能等前沿科技教程和软件工具,具体看这里。
AIGC技术的未来发展前景广阔,随着人工智能技术的不断发展,AIGC技术也将不断提高。未来,AIGC技术将在游戏和计算领域得到更广泛的应用,使游戏和计算系统具有更高效、更智能、更灵活的特性。同时,AIGC技术也将与人工智能技术紧密结合,在更多的领域得到广泛应用,对程序员来说影响至关重要。未来,AIGC技术将继续得到提高,同时也将与人工智能技术紧密结合,在更多的领域得到广泛应用。
一、AIGC所有方向的学习路线
AIGC所有方向的技术点做的整理,形成各个领域的知识点汇总,它的用处就在于,你可以按照下面的知识点去找对应的学习资源,保证自己学得较为全面。
二、AIGC必备工具
工具都帮大家整理好了,安装就可直接上手!
三、最新AIGC学习笔记
当我学到一定基础,有自己的理解能力的时候,会去阅读一些前辈整理的书籍或者手写的笔记资料,这些笔记详细记载了他们对一些技术点的理解,这些理解是比较独到,可以学到不一样的思路。
四、AIGC视频教程合集
观看全面零基础学习视频,看视频学习是最快捷也是最有效果的方式,跟着视频中老师的思路,从基础到深入,还是很容易入门的。
五、实战案例
纸上得来终觉浅,要学会跟着视频一起敲,要动手实操,才能将自己的所学运用到实际当中去,这时候可以搞点实战案例来学习。
相关文章:

ComfyUI和Photoshop相结合,PS内实现:文生图,图生图,高清放大,局部重绘,面部修复,设计师福音
本文主要介绍:ComfyUI和Photoshop相结合,一个平台实现:图像生成,放大,局部重绘,面部修复,实时绘画 简直是设计师的福音。 主要包括: Photoshop 的安装以及插件的安装 Creative Cl…...
使用 map 和 reduce 提取对象数组中的 id 并组成新数组
在开发过程中,经常需要对 API 返回的数据进行处理,例如从对象数组中提取某些字段,并将它们组成新的数组。这里我们将介绍如何通过 JavaScript 的 map 和 reduce 方法来完成这一需求,并深入比较这两者的用法与适用场景。 需求&…...

Zero-Shot Relational Learning for Multimodal Knowledge Graphs
摘要 关系学习是知识表示领域,特别是知识图补全(KGC)领域的一项重要任务。虽然传统单模态环境下的关系学习已经得到了广泛的研究,但在多模态KGC环境下探索关系学习提出了不同的挑战和机遇。其中一个主要挑战是在没有任何相关训练…...

AUTOSAR COM 模块的主要功能导读以及示例
AUTOSAR COM 模块的主要功能 AUTOSAR COM 模块在车载系统中用于管理通信的中间层,主要功能包括: 信号传输与接收: • 提供信号打包和解包功能,将信号数据打包成协议数据单元(I-PDU)以便传输,或从接收到的…...

VMware下Centos7虚拟机数据盘/data目录(非lvm)不停机热扩容实操
实操环境 VMware:7.0 虚拟机:Centos7 (TEST-K8S-Node01) 扩容目录:/data (20G>>30G) 前置操作 注意事项:如果有条件的话,建议先做个主机的全量备份(…...

易盾增强版滑块识别/易盾识别/滑块识别/增强版滑块识别/易盾滑块本地识别
易盾增强版滑块识别 计算思路如下: 滑动条拖动距离传入 restrict 算法处理得到 初次值 J J * 率值0.309375 得到滑块偏移量。 滑块的旋转角度滑块偏移量*attrs 所以滑块偏移量滑块的旋转角度/attrs 通过滑块偏移量 求出 滑动条拖动距离 # 应用高斯模糊warped_…...

DMRl-Former用于工业过程预测建模和关键样本分析的数据模式相关可解释Transformer网络
DMRl-Former用于工业过程预测建模和关键样本分析的数据模式相关可解释Transformer网络 Liu, Diju, et al. “Data mode related interpretable transformer network for predictive modeling and key sample analysis in industrial processes.” IEEE Transactions on Indust…...

向量模型Jina Embedding: 从v1到v3论文笔记
文章目录 Jina Embedding: 从v1到v3Jina Embedding v1数据集准备训练过程 Jina Embedding v2预训练修改版BERT在文本对上微调在Hard Negatives上微调 Jina Embedding v2 双语言预训练修改版BERT在文本对上微调用多任务目标微调 Jina Embedding v3预训练在文本对上微调训练任务相…...

Spring学习笔记(一)
一 、Spring概述 (一)Spring是什么 Spring是一个分层的Java SE/EE full-stack(一站式)轻量级开源框架,以 IoC(Inverse Of Control:反转控制)和 AOP(Aspect Oriented Programming:面…...
Java编程基础
Java是一种广泛使用的编程语言,以其跨平台兼容性、面向对象的特性和健壮的安全性而闻名。本篇文章将带你了解Java编程的基础知识。 Java简介 Java是由Sun Microsystems(现在是Oracle Corporation的一部分)在1995年发布的。它是一种静态类型…...

C++【string类,模拟实现string类】
🌟个人主页:落叶 🌟当前专栏: C专栏 目录 为什么学习string类 C语言中的字符串 标准库中的string类 auto和范围for auto关键字 迭代器 范围for string类的常用接口说明和使用 1. string类对象的常见构造 2.string类对象的容量操作 3…...

Jupyter lab 打开时默认使用 Notebook 而不是浏览器
Jupyter lab 打开时默认使用 Notebook 而不是浏览器 正文 正文 今天遇到了一个特别有意思的事情,这里我们以 Windows \textrm{Windows} Windows 系统举例。 我们知道通常我们需要使用如下代码在 Terminal \textrm{Terminal} Terminal 中打开 Jupyter lab \textr…...
【linux】ubunda repo是什么
Ubuntu repo(repository,简称repo)是一个软件仓库,它是存储和分发软件包的服务器或一组服务器。通俗地说,Ubuntu repo就像一个巨大的在线软件商店,用户可以从中下载和安装各种软件。 主要特点 软件集合&a…...

【MySQL】深层理解索引及特性(重点)--下(12)
索引(重点) 1. 索引的作用2. 索引操作2.1 主键索引2.1.1 主键索引的特点2.1.2 创建主键索引 2.2 唯一键索引2.2.1 唯一键索引的特点2.2.2 唯一索引的创建 2.3 普通索引2.3.1 普通索引的特点2.3.2 普通索引的创建 2.4 全文索引2.4.1 全文索引的作用2.4.2 …...

无人机声学侦测算法详解!
一、算法原理 无人机在飞行过程中,其电机工作、旋翼震动以及气流扰动等都会产生一定程度的噪声。这些噪声具有独特的声学特征,如频率范围、时域和频域特性等,可以用于无人机的检测与识别。声学侦测算法利用这些特征,通过一系列步…...
git 提交仓库
创建 git 仓库: mkdir pySoundImage cd pySoundImage git init touch README.md git add README.md git commit -m “first commit” git remote add origin https://gitee.com/hunan-co-changsha-branch/pytest.git git push -u origin master 已有仓库ÿ…...

基于大语言模型(LLM)自主Agent 智能体综述
近年来,LLM(Large Language Model)取得了显著成功,并显示出了达到人类智能的巨大潜力。基于这种能力,使用LLM作为中央控制器来构建自助Agent,以获得类人决策能力。 Autonomous agents 又被称为智能体、Agent。指能够通过感知周围环境、进行规划以及执行动作来完成既定任务。…...
使用命令行管理 Windows 环境变量
1. 使用命令提示符 (CMD) 1.1. 设置环境变量 添加或修改临时环境变量(当前会话有效) set MY_VARvalue添加或修改用户环境变量 setx MY_VAR "value"添加或修改系统环境变量(需要管理员权限): setx /M MY…...

AUTODL配置百度网盘数据传输
AUTODL使用 1.配置百度网盘开放平台 2.接入并创建应用 3.创建应用 4.添加授权...
LeetCode46. 全排列(2024秋季每日一题 57)
给定一个不含重复数字的数组 nums ,返回其 所有可能的全排列 。你可以 按任意顺序 返回答案。 示例 1: 输入:nums [1,2,3] 输出:[[1,2,3],[1,3,2],[2,1,3],[2,3,1],[3,1,2],[3,2,1]] 示例 2: 输入:nums …...

接口测试中缓存处理策略
在接口测试中,缓存处理策略是一个关键环节,直接影响测试结果的准确性和可靠性。合理的缓存处理策略能够确保测试环境的一致性,避免因缓存数据导致的测试偏差。以下是接口测试中常见的缓存处理策略及其详细说明: 一、缓存处理的核…...
Java如何权衡是使用无序的数组还是有序的数组
在 Java 中,选择有序数组还是无序数组取决于具体场景的性能需求与操作特点。以下是关键权衡因素及决策指南: ⚖️ 核心权衡维度 维度有序数组无序数组查询性能二分查找 O(log n) ✅线性扫描 O(n) ❌插入/删除需移位维护顺序 O(n) ❌直接操作尾部 O(1) ✅内存开销与无序数组相…...
JVM垃圾回收机制全解析
Java虚拟机(JVM)中的垃圾收集器(Garbage Collector,简称GC)是用于自动管理内存的机制。它负责识别和清除不再被程序使用的对象,从而释放内存空间,避免内存泄漏和内存溢出等问题。垃圾收集器在Ja…...

全球首个30米分辨率湿地数据集(2000—2022)
数据简介 今天我们分享的数据是全球30米分辨率湿地数据集,包含8种湿地亚类,该数据以0.5X0.5的瓦片存储,我们整理了所有属于中国的瓦片名称与其对应省份,方便大家研究使用。 该数据集作为全球首个30米分辨率、覆盖2000–2022年时间…...

从零开始打造 OpenSTLinux 6.6 Yocto 系统(基于STM32CubeMX)(九)
设备树移植 和uboot设备树修改的内容同步到kernel将设备树stm32mp157d-stm32mp157daa1-mx.dts复制到内核源码目录下 源码修改及编译 修改arch/arm/boot/dts/st/Makefile,新增设备树编译 stm32mp157f-ev1-m4-examples.dtb \stm32mp157d-stm32mp157daa1-mx.dtb修改…...
Linux云原生安全:零信任架构与机密计算
Linux云原生安全:零信任架构与机密计算 构建坚不可摧的云原生防御体系 引言:云原生安全的范式革命 随着云原生技术的普及,安全边界正在从传统的网络边界向工作负载内部转移。Gartner预测,到2025年,零信任架构将成为超…...
拉力测试cuda pytorch 把 4070显卡拉满
import torch import timedef stress_test_gpu(matrix_size16384, duration300):"""对GPU进行压力测试,通过持续的矩阵乘法来最大化GPU利用率参数:matrix_size: 矩阵维度大小,增大可提高计算复杂度duration: 测试持续时间(秒&…...

视频行为标注工具BehaviLabel(源码+使用介绍+Windows.Exe版本)
前言: 最近在做行为检测相关的模型,用的是时空图卷积网络(STGCN),但原有kinetic-400数据集数据质量较低,需要进行细粒度的标注,同时粗略搜了下已有开源工具基本都集中于图像分割这块,…...
C#学习第29天:表达式树(Expression Trees)
目录 什么是表达式树? 核心概念 1.表达式树的构建 2. 表达式树与Lambda表达式 3.解析和访问表达式树 4.动态条件查询 表达式树的优势 1.动态构建查询 2.LINQ 提供程序支持: 3.性能优化 4.元数据处理 5.代码转换和重写 适用场景 代码复杂性…...
Redis:现代应用开发的高效内存数据存储利器
一、Redis的起源与发展 Redis最初由意大利程序员Salvatore Sanfilippo在2009年开发,其初衷是为了满足他自己的一个项目需求,即需要一个高性能的键值存储系统来解决传统数据库在高并发场景下的性能瓶颈。随着项目的开源,Redis凭借其简单易用、…...