当前位置: 首页 > news >正文

Elasticsearch里的索引index是什么概念?(ChatGPT回答)

在 Elasticsearch(ES)中,索引(Index) 是一种数据结构,用来存储、组织和管理文档数据。它可以理解为数据库中的一张表,但有一些关键的不同之处。索引是 Elasticsearch 全文搜索引擎的核心概念之一,它允许快速、高效地搜索和分析大量文本数据。

索引的关键概念和特点:

  1. 索引是数据的集合

    • 索引是由多个**文档(document)**组成的集合。在数据库系统中,索引类似于一张表格,而文档则类似于表中的一行数据。
    • 每个索引都可以包含大量的文档,这些文档是用 JSON 格式存储的。
  2. 分片(Shards)和副本(Replicas)

    • Elasticsearch 中的索引被分成多个分片,每个分片可以分布在不同的节点上,便于横向扩展。
    • 每个分片可以有多个副本,副本用于数据的冗余存储,提供故障恢复能力和负载均衡。
  3. 文档和字段

    • 索引中的每条数据叫做文档(document),文档是以 JSON 格式存储的结构化数据。
    • 文档由多个**字段(fields)**组成,比如一个产品文档可能包含 namepricedescription 等字段。
  4. 数据类型和映射(Mapping)

    • 每个索引都有映射(mapping),定义了文档中每个字段的类型和其他相关设置。类似于关系型数据库中的模式(schema)。
    • 字段的类型可以是 textkeywordintegerdate 等。映射还可以定义如何对文本进行分析、索引策略等。
  5. 索引与全文搜索

    • 当你向索引中存入文档时,Elasticsearch 会自动对文档的内容进行索引。这个索引过程包括分词倒排索引,帮助系统快速找到与查询匹配的文档。
    • 索引的作用不仅仅是存储数据,更重要的是加速搜索,尤其是在处理全文搜索时,索引大幅提高了查询的速度和效率。
  6. 动态索引

    • Elasticsearch 支持动态索引,即当你向索引中插入新字段时,Elasticsearch 可以自动为新字段创建映射。这使得 Elasticsearch 非常灵活,不需要提前定义所有字段。

举个例子:

假设你有一个存储产品信息的索引,它的结构如下:

{"product_name": "Smartphone X","price": 999,"description": "A high-end smartphone with advanced features","release_date": "2024-01-15"
}

这个文档包含四个字段:product_namepricedescriptionrelease_date

  • 索引 就是存储大量类似文档的集合,比如所有的商品。
  • 文档 是单个商品的信息。
  • 字段 是文档中的具体属性,比如 product_nameprice

创建索引的示例:

通过 Elasticsearch 的 REST API,可以创建一个索引:

PUT /products
{"settings": {"number_of_shards": 3,"number_of_replicas": 1},"mappings": {"properties": {"product_name": {"type": "text"},"price": {"type": "integer"},"description": {"type": "text"},"release_date": {"type": "date"}}}
}

在这个例子中,我们创建了一个名为 products 的索引,定义了 4 个字段及其类型,并指定了分片和副本的数量。

索引的生命周期:

  • 创建索引:索引创建后,你可以向其中添加文档。
  • 写入文档:文档通过 API 写入索引,Elasticsearch 对文档中的字段进行索引处理。
  • 查询索引:可以对索引中的文档执行查询、分析操作,比如全文搜索、聚合分析等。
  • 删除索引:当不需要索引时,你可以删除它,所有数据将被移除。

小结:

索引是 Elasticsearch 中用来存储和组织文档数据的基本单位。它类似于数据库中的表,但通过复杂的倒排索引技术实现快速、高效的全文检索。索引不仅是数据的容器,也是实现强大搜索能力的核心。

相关文章:

Elasticsearch里的索引index是什么概念?(ChatGPT回答)

在 Elasticsearch(ES)中,索引(Index) 是一种数据结构,用来存储、组织和管理文档数据。它可以理解为数据库中的一张表,但有一些关键的不同之处。索引是 Elasticsearch 全文搜索引擎的核心概念之一…...

安全性测试

安全性测试评估系统在面对各种安全威胁时的防护能力和安全性的过程。以下是安全性测试的一些主要方面和方法: 1. 身份验证和授权测试 测试目标 确保系统能够正确验证用户的身份,并根据用户的权限授予相应的访问权限。测试方法 弱密码测试:尝…...

ComfyUI和Photoshop相结合,PS内实现:文生图,图生图,高清放大,局部重绘,面部修复,设计师福音

本文主要介绍:ComfyUI和Photoshop相结合,一个平台实现:图像生成,放大,局部重绘,面部修复,实时绘画 简直是设计师的福音。 主要包括: Photoshop 的安装以及插件的安装 Creative Cl…...

使用 map 和 reduce 提取对象数组中的 id 并组成新数组

在开发过程中,经常需要对 API 返回的数据进行处理,例如从对象数组中提取某些字段,并将它们组成新的数组。这里我们将介绍如何通过 JavaScript 的 map 和 reduce 方法来完成这一需求,并深入比较这两者的用法与适用场景。 需求&…...

Zero-Shot Relational Learning for Multimodal Knowledge Graphs

摘要 关系学习是知识表示领域,特别是知识图补全(KGC)领域的一项重要任务。虽然传统单模态环境下的关系学习已经得到了广泛的研究,但在多模态KGC环境下探索关系学习提出了不同的挑战和机遇。其中一个主要挑战是在没有任何相关训练…...

AUTOSAR COM 模块的主要功能导读以及示例

AUTOSAR COM 模块的主要功能 AUTOSAR COM 模块在车载系统中用于管理通信的中间层,主要功能包括: 信号传输与接收: • 提供信号打包和解包功能,将信号数据打包成协议数据单元(I-PDU)以便传输,或从接收到的…...

VMware下Centos7虚拟机数据盘/data目录(非lvm)不停机热扩容实操

实操环境 VMware:7.0 虚拟机:Centos7 (TEST-K8S-Node01) 扩容目录:/data (20G>>30G) 前置操作 注意事项:如果有条件的话,建议先做个主机的全量备份(…...

易盾增强版滑块识别/易盾识别/滑块识别/增强版滑块识别/易盾滑块本地识别

易盾增强版滑块识别 计算思路如下: 滑动条拖动距离传入 restrict 算法处理得到 初次值 J J * 率值0.309375 得到滑块偏移量。 滑块的旋转角度滑块偏移量*attrs 所以滑块偏移量滑块的旋转角度/attrs 通过滑块偏移量 求出 滑动条拖动距离 # 应用高斯模糊warped_…...

DMRl-Former用于工业过程预测建模和关键样本分析的数据模式相关可解释Transformer网络

DMRl-Former用于工业过程预测建模和关键样本分析的数据模式相关可解释Transformer网络 Liu, Diju, et al. “Data mode related interpretable transformer network for predictive modeling and key sample analysis in industrial processes.” IEEE Transactions on Indust…...

向量模型Jina Embedding: 从v1到v3论文笔记

文章目录 Jina Embedding: 从v1到v3Jina Embedding v1数据集准备训练过程 Jina Embedding v2预训练修改版BERT在文本对上微调在Hard Negatives上微调 Jina Embedding v2 双语言预训练修改版BERT在文本对上微调用多任务目标微调 Jina Embedding v3预训练在文本对上微调训练任务相…...

Spring学习笔记(一)

一 、Spring概述 (一)Spring是什么 Spring是一个分层的Java SE/EE full-stack(一站式)轻量级开源框架,以 IoC(Inverse Of Control:反转控制)和 AOP(Aspect Oriented Programming:面…...

Java编程基础

Java是一种广泛使用的编程语言,以其跨平台兼容性、面向对象的特性和健壮的安全性而闻名。本篇文章将带你了解Java编程的基础知识。 Java简介 Java是由Sun Microsystems(现在是Oracle Corporation的一部分)在1995年发布的。它是一种静态类型…...

C++【string类,模拟实现string类】

🌟个人主页:落叶 🌟当前专栏: C专栏 目录 为什么学习string类 C语言中的字符串 标准库中的string类 auto和范围for auto关键字 迭代器 范围for string类的常用接口说明和使用 1. string类对象的常见构造 2.string类对象的容量操作 3…...

Jupyter lab 打开时默认使用 Notebook 而不是浏览器

Jupyter lab 打开时默认使用 Notebook 而不是浏览器 正文 正文 今天遇到了一个特别有意思的事情,这里我们以 Windows \textrm{Windows} Windows 系统举例。 我们知道通常我们需要使用如下代码在 Terminal \textrm{Terminal} Terminal 中打开 Jupyter lab \textr…...

【linux】ubunda repo是什么

Ubuntu repo(repository,简称repo)是一个软件仓库,它是存储和分发软件包的服务器或一组服务器。通俗地说,Ubuntu repo就像一个巨大的在线软件商店,用户可以从中下载和安装各种软件。 主要特点 软件集合&a…...

【MySQL】深层理解索引及特性(重点)--下(12)

索引(重点) 1. 索引的作用2. 索引操作2.1 主键索引2.1.1 主键索引的特点2.1.2 创建主键索引 2.2 唯一键索引2.2.1 唯一键索引的特点2.2.2 唯一索引的创建 2.3 普通索引2.3.1 普通索引的特点2.3.2 普通索引的创建 2.4 全文索引2.4.1 全文索引的作用2.4.2 …...

无人机声学侦测算法详解!

一、算法原理 无人机在飞行过程中,其电机工作、旋翼震动以及气流扰动等都会产生一定程度的噪声。这些噪声具有独特的声学特征,如频率范围、时域和频域特性等,可以用于无人机的检测与识别。声学侦测算法利用这些特征,通过一系列步…...

git 提交仓库

创建 git 仓库: mkdir pySoundImage cd pySoundImage git init touch README.md git add README.md git commit -m “first commit” git remote add origin https://gitee.com/hunan-co-changsha-branch/pytest.git git push -u origin master 已有仓库&#xff…...

基于大语言模型(LLM)自主Agent 智能体综述

近年来,LLM(Large Language Model)取得了显著成功,并显示出了达到人类智能的巨大潜力。基于这种能力,使用LLM作为中央控制器来构建自助Agent,以获得类人决策能力。 Autonomous agents 又被称为智能体、Agent。指能够通过感知周围环境、进行规划以及执行动作来完成既定任务。…...

使用命令行管理 Windows 环境变量

1. 使用命令提示符 (CMD) 1.1. 设置环境变量 添加或修改临时环境变量(当前会话有效) set MY_VARvalue添加或修改用户环境变量 setx MY_VAR "value"添加或修改系统环境变量(需要管理员权限): setx /M MY…...

uni-app学习笔记二十二---使用vite.config.js全局导入常用依赖

在前面的练习中,每个页面需要使用ref,onShow等生命周期钩子函数时都需要像下面这样导入 import {onMounted, ref} from "vue" 如果不想每个页面都导入,需要使用node.js命令npm安装unplugin-auto-import npm install unplugin-au…...

理解 MCP 工作流:使用 Ollama 和 LangChain 构建本地 MCP 客户端

🌟 什么是 MCP? 模型控制协议 (MCP) 是一种创新的协议,旨在无缝连接 AI 模型与应用程序。 MCP 是一个开源协议,它标准化了我们的 LLM 应用程序连接所需工具和数据源并与之协作的方式。 可以把它想象成你的 AI 模型 和想要使用它…...

听写流程自动化实践,轻量级教育辅助

随着智能教育工具的发展,越来越多的传统学习方式正在被数字化、自动化所优化。听写作为语文、英语等学科中重要的基础训练形式,也迎来了更高效的解决方案。 这是一款轻量但功能强大的听写辅助工具。它是基于本地词库与可选在线语音引擎构建,…...

Redis:现代应用开发的高效内存数据存储利器

一、Redis的起源与发展 Redis最初由意大利程序员Salvatore Sanfilippo在2009年开发,其初衷是为了满足他自己的一个项目需求,即需要一个高性能的键值存储系统来解决传统数据库在高并发场景下的性能瓶颈。随着项目的开源,Redis凭借其简单易用、…...

给网站添加live2d看板娘

给网站添加live2d看板娘 参考文献: stevenjoezhang/live2d-widget: 把萌萌哒的看板娘抱回家 (ノ≧∇≦)ノ | Live2D widget for web platformEikanya/Live2d-model: Live2d model collectionzenghongtu/live2d-model-assets 前言 网站环境如下,文章也主…...

嵌入式学习之系统编程(九)OSI模型、TCP/IP模型、UDP协议网络相关编程(6.3)

目录 一、网络编程--OSI模型 二、网络编程--TCP/IP模型 三、网络接口 四、UDP网络相关编程及主要函数 ​编辑​编辑 UDP的特征 socke函数 bind函数 recvfrom函数(接收函数) sendto函数(发送函数) 五、网络编程之 UDP 用…...

加密通信 + 行为分析:运营商行业安全防御体系重构

在数字经济蓬勃发展的时代,运营商作为信息通信网络的核心枢纽,承载着海量用户数据与关键业务传输,其安全防御体系的可靠性直接关乎国家安全、社会稳定与企业发展。随着网络攻击手段的不断升级,传统安全防护体系逐渐暴露出局限性&a…...

Monorepo架构: Nx Cloud 扩展能力与缓存加速

借助 Nx Cloud 实现项目协同与加速构建 1 ) 缓存工作原理分析 在了解了本地缓存和远程缓存之后,我们来探究缓存是如何工作的。以计算文件的哈希串为例,若后续运行任务时文件哈希串未变,系统会直接使用对应的输出和制品文件。 2 …...

解析“道作为序位生成器”的核心原理

解析“道作为序位生成器”的核心原理 以下完整展开道函数的零点调控机制,重点解析"道作为序位生成器"的核心原理与实现框架: 一、道函数的零点调控机制 1. 道作为序位生成器 道在认知坐标系$(x_{\text{物}}, y_{\text{意}}, z_{\text{文}}…...

Android多媒体——音/视频数据播放(十八)

在媒体数据完成解码并准备好之后,播放流程便进入了最终的呈现阶段。为了确保音视频内容能够顺利输出,系统需要首先对相应的播放设备进行初始化。只有在设备初始化成功后,才能真正开始音视频的同步渲染与播放。这一过程不仅影响播放的启动速度,也直接关系到播放的稳定性和用…...