当前位置: 首页 > news >正文

跳表原理课堂笔记

课程地址

跳表是一种基于随机化的有序数据结构,它提出是为了赋予有序单链表以 O(logn) 的快速查找和插入的能力

创建

在这里插入图片描述
首先在头部创建一个 sentinel 节点,然后在 L1 层采用“抛硬币”的方式来决定 L0 层的指针是否增长到 L1 层

在这里插入图片描述

例如上图中,L0 层的节点2,10,11,13,20,26 都增长到了 L1 层。继续采用抛硬币的方式,来决定 L1 层的指针是否增长到 L2 层

在这里插入图片描述
例如上图中,L1 层的节点2,13,26 都增长到了 L2 层。继续采用抛硬币的方式,来决定 L2 层的指针是否增长到 L3 层

在这里插入图片描述
例如上图中,L2 层的节点 13 增长到了 L3 层。至此我们停止层数增长,层数一般定为 logn 层

所以 L0 层保存了原始数据,逐个串联。L1 层平均每次跳过 1 个,L2 层平均每次跳过 2 个,L3 层平均每次跳过 4 个

跳跃相当于快速通道,使我们得以快速确定查找的元素是否在当前区间中

查找

首先查找 key = 13,从 L3 层开始查找,第一个节点的值就是 13,直接找到了
在这里插入图片描述

然后查找 key = 8,从 L3 出发,第一个节点的值是 13,大于 8,则从 Sentinel 向下走一层到 L2

从 L2 的 Sentinel 出发,第一个节点的值是 2,小于 8,则继续向后走一步,下一个节点的值是 13,大于 8,则从 L2 的第一个节点(2)向下走一层到 L1

从 L1 的第一个节点(2)出发,下一个节点的值是 10,大于 8,则从 L1 的第一个节点(2)向下走一层到 L0

从 L0 的第一个节点(2)出发,下一个节点的值是8,则找到了

在这里插入图片描述

然后查找 key = 20,从 L3 的 Sentinel 出发,下一个节点的值是 13,小于 20,因为 13 节点已经是最后一个节点,不能再往后走,所以向下走一层到 L2

从 L2 的第二个节点(13)出发,下一个节点的值是 26,大于 13,则向下走一层到 L1 层

从 L1 层的第 4 个节点出发,下一个节点的值是 20,则找到了

在这里插入图片描述

最后一个查找的例子是查找 key = 21,从 L3 的 Sentinel 出发,下一个节点的值是 13,小于 21,因为 13 节点已经是最后一个节点,所以向下走一层到 L2

从 L2 的第二个节点(13)出发,下一个节点的值是 26,大于 13,则向下走一层到 L1 层

从 L1 层的第 4 个节点出发,下一个节点的值是 20,小于 21,则向后走一步到 26,大于 21,则从 20 向下走一步到达 L0 层

从 L0 层的第 7 个节点(20)出发,下一个节点的值是 22,已经大于 21,因为 L0 已经是最底层,所以 20 和 22 之间没有其他节点,故 key = 21 不存在

在这里插入图片描述

新增

在这里插入图片描述
首先需要确定新节点的插入位置,这个过程跟查找是一致的,上图中红色箭头就表示新节点需要插入到这个范围内

同时使用一张哈希表记录下每个红色箭头的起点(指针)

在这里插入图片描述

接下来创建一个新节点,它的指针域采用“抛硬币”的方式决定是否向上层增长:如果正面朝上就增加一层,如果反面朝上就终止这个过程,那么新节点的高度会以指数的方式快速收敛。例如上图中,新节点 9 就是抛了 2 次硬币都正面朝上,第三次反面朝上

最后,借助表中记录的指针,将新的节点插入到跳表中

在这里插入图片描述

跳表 vs B+树

相关文章:

跳表原理课堂笔记

课程地址 跳表是一种基于随机化的有序数据结构,它提出是为了赋予有序单链表以 O(logn) 的快速查找和插入的能力 创建 首先在头部创建一个 sentinel 节点,然后在 L1 层采用“抛硬币”的方式来决定 L0 层的指针是否增长到 L1 层 例如上图中,L…...

Windows系统使用OpenSSL生成自签名证书

Nginx服务器添加SSL证书。 要在Windows系统的Nginx Web服务器上使用OpenSSL生成证书,并确保该证书能在局域网内被计算机信任,你可以按照以下详细步骤进行操作: 一、生成证书 下载并安装OpenSSL: 从OpenSSL的官方网站下载适用于Wi…...

定位new的表达式

这里面会涉及内存池,所谓的内存池就是池化技术,让我们使用的更加方便,里面有1.线存池和连接池。 如果想要高频释放内存池,要针对系统有个堆,而堆事针对我们需要的生擒一个特例,和我们家庭里面妈妈给爸爸的…...

矩阵特殊打印方式

小伙伴们大家好,好几天没更新了,主要有个比赛。从今天起继续给大家更新,今天给大家带来一种新的题型:矩阵特殊打印方式。 螺旋打印矩阵 解题思路 首先给大家看一下什么是螺旋方式打印: 就像这样一直转圈圈。 我想大多…...

OCC 拟合的平面转换为有界平面

问题:针对导入的部分面无法获取大小,同时也无法判断点是否在面上。但是OBB可以获取大小 解决方法:通过面拟合转换gp_Pln,然后获取面的内外边,重新修剪生成新的TopoDS_Face 疑问:本人对OCC中各种面的特性不…...

Nginx性能优化的几个方法

文章目录 一 Nginx 配置优化二 缓存利用三 压缩策略四 安全性优化修改配置文件修改 Nginx 源码使用第三方模块 五 监控和日志优化六 系统层面优化七 故障转移优化 小伙伴们平时使用 Nginx 是否有进行过性能优化呢?还是软件装好了就直接使用呢? 今天松哥和…...

Unity性能优化5【物理篇】

1.刚体的碰撞检测属性首选离散型 离散碰撞的缺点是小物体快速移动时,有丢失碰撞的风险。此下拉菜单中,越下面的选项碰撞检测频率越高,性能消耗也显著增加。因此在选择碰撞检测类型时尽量选择离散型。 2.优化碰撞矩阵 合理标记碰撞矩阵可以减…...

我的工具列表

开发工具 名称备注Visual Studio微软开发工具集Visual Studio Code代码编辑器Qt CreatorQt IDEQt Design StudioQt 界面设计器linguistQt 国际化翻译PyCharmPython IDEVMware Workstation Pro虚拟机MATLAB数据计算和仿真Keil单片机 IDENavicat Premium数据库管理MobaXterm远程…...

985研一学习日记 - 2024.11.5

一个人内耗,说明他活在过去;一个人焦虑,说明他活在未来。只有当一个人平静时,他才活在现在。 日常 1、起床6:00 2、健身1.5h 今天练了胸,然后跑了会步,又吃多了,明天少吃点! 3、…...

Vue2 与 Vue3 的区别

Vue.js 作为流行的前端框架,已经经历了多次版本的更新迭代,从 Vue2 到 Vue3 的转变不仅带来了新的功能,也在性能、开发体验等方面作出了显著改进。无论是对于新手还是有经验的开发者,了解这两个版本之间的差异都至关重要。本文将讨…...

虚拟现实技术课程开发思路

文章目录 组队选题立项分工建模说明:场景说明:交互说明: 结语: 前言:最近学弟学妹们反馈水水老师课程开始上强度了。不仅有翻转课堂,还有理论课实验课都要做东西出来。听说理论课是做什么博物馆什么的&…...

triangle_area_calculators库发布

最近将在pip网站上发布triangle_area_calculators库(我编写的python第三方库) triangle_area_calculators库用于计算不同类型及不同已知量的三角形面积 在triangle_area_calculators库中,有一个名为TriangleAreaCalculators的类 可以通过f…...

ClickHouse数据库SSL配置和SSL连接测试

目录 1.Server SSL配置介绍 2.Client SSL访问配置的介绍 3.my测试环境上开启ClickHouse Server SSL配置 & 客户端SSL访问的配置流程 4.附录 1)SSL证书的几种类型 单域名SSL证书 通配符SSL证书 多域名SSL证书 多域名通配符SSL证书 2)单域名…...

云渲染与汽车CGI图像技术优势和劣势

在数字时代,云渲染技术以其独特的优势在汽车CGI图像制作中占据了重要地位。云渲染通过利用云计算的分布式处理能力,将渲染任务分配给云端的服务器集群进行计算,从而实现高效、高质量的渲染效果。 这种技术的优势主要体现在以下几个方面&#…...

信号与噪声分析——第二节:随机变量的统计特征

2.1 单个随机变量的统计特征 随机变量是什么? 当随机变量X的取值个数是有限个的时候,我们称它为离散随机变量。 当随机变量X的取值个数是无限个的时候,我们称它为连续随机变量。 1. 分布函数和概率密度 1.分布函数 分布函数 定义为随机变…...

PHP网络爬虫常见的反爬策略

PHP网络爬虫在抓取数据时,常常会遭遇各种反爬策略。这些策略是网站为了保护自身数据不被恶意爬取而设置的。以下是一些常见的PHP网络爬虫反爬策略: IP限制: 这是最常见的反爬虫技术。通过限制IP的访问,可以有效防止恶意的爬虫攻击…...

java java.util.Scanner设置编码

在Java中,可以通过设置Scanner对象的编码来读取特定编码的输入。 使用Scanner的构造方法时,可以传入一个InputStream对象作为参数来设置编码。例如,如果要设置编码为UTF-8,可以这样写: InputStream inputStream Syst…...

小菜家教平台(二):基于SpringBoot+Vue打造一站式学习管理系统

目录 前言 今日进度 详细过程 一、数据库重构 二、编写登录接口 相关知识点 前言 昨天我们重启了小菜家教平台的开发,创建了新项目并初步进行了配置,今天我们继续。大家要是有需要源码的话可以在评论区跟我说,博客中就不添加源码了~ 今…...

Android AndroidManifest 文件内标签及属性

以下是重新排版后的文章&#xff1a; AndroidManifest 1. <manifest> 它是AndroidManifest.xml文件的根标签&#xff0c;包含了整个应用程序的基本信息&#xff0c;如应用程序的包名、版本代码、版本名称等。所有其他标签几乎都是在manifest标签内部定义的。 示例&…...

修改sql server 数据库的排序规则Chinese_PRC_CI_AS(字符集+排序)

文章目录 引言I 解决方案案例II 知识扩展排序规则SQL SERVER支持的所有排序规则引言 新增sql server 数据库实例的默认排序规则不支持中文存储,导致乱码 解决方案: 修改排序规则为Chinese_PRC_CI_AS 或者 Chinese_PRC_Stroke_CI_AS_WS或者Chinese_PRC_CI_AI_KS_WS 仅对新增…...

日语AI面试高效通关秘籍:专业解读与青柚面试智能助攻

在如今就业市场竞争日益激烈的背景下&#xff0c;越来越多的求职者将目光投向了日本及中日双语岗位。但是&#xff0c;一场日语面试往往让许多人感到步履维艰。你是否也曾因为面试官抛出的“刁钻问题”而心生畏惧&#xff1f;面对生疏的日语交流环境&#xff0c;即便提前恶补了…...

大语言模型如何处理长文本?常用文本分割技术详解

为什么需要文本分割? 引言:为什么需要文本分割?一、基础文本分割方法1. 按段落分割(Paragraph Splitting)2. 按句子分割(Sentence Splitting)二、高级文本分割策略3. 重叠分割(Sliding Window)4. 递归分割(Recursive Splitting)三、生产级工具推荐5. 使用LangChain的…...

.Net Framework 4/C# 关键字(非常用,持续更新...)

一、is 关键字 is 关键字用于检查对象是否于给定类型兼容,如果兼容将返回 true,如果不兼容则返回 false,在进行类型转换前,可以先使用 is 关键字判断对象是否与指定类型兼容,如果兼容才进行转换,这样的转换是安全的。 例如有:首先创建一个字符串对象,然后将字符串对象隐…...

Python基于历史模拟方法实现投资组合风险管理的VaR与ES模型项目实战

说明&#xff1a;这是一个机器学习实战项目&#xff08;附带数据代码文档&#xff09;&#xff0c;如需数据代码文档可以直接到文章最后关注获取。 1.项目背景 在金融市场日益复杂和波动加剧的背景下&#xff0c;风险管理成为金融机构和个人投资者关注的核心议题之一。VaR&…...

Java数值运算常见陷阱与规避方法

整数除法中的舍入问题 问题现象 当开发者预期进行浮点除法却误用整数除法时,会出现小数部分被截断的情况。典型错误模式如下: void process(int value) {double half = value / 2; // 整数除法导致截断// 使用half变量 }此时...

Qemu arm操作系统开发环境

使用qemu虚拟arm硬件比较合适。 步骤如下&#xff1a; 安装qemu apt install qemu-system安装aarch64-none-elf-gcc 需要手动下载&#xff0c;下载地址&#xff1a;https://developer.arm.com/-/media/Files/downloads/gnu/13.2.rel1/binrel/arm-gnu-toolchain-13.2.rel1-x…...

论文阅读:LLM4Drive: A Survey of Large Language Models for Autonomous Driving

地址&#xff1a;LLM4Drive: A Survey of Large Language Models for Autonomous Driving 摘要翻译 自动驾驶技术作为推动交通和城市出行变革的催化剂&#xff0c;正从基于规则的系统向数据驱动策略转变。传统的模块化系统受限于级联模块间的累积误差和缺乏灵活性的预设规则。…...

tauri项目,如何在rust端读取电脑环境变量

如果想在前端通过调用来获取环境变量的值&#xff0c;可以通过标准的依赖&#xff1a; std::env::var(name).ok() 想在前端通过调用来获取&#xff0c;可以写一个command函数&#xff1a; #[tauri::command] pub fn get_env_var(name: String) -> Result<String, Stri…...

数据结构:递归的种类(Types of Recursion)

目录 尾递归&#xff08;Tail Recursion&#xff09; 什么是 Loop&#xff08;循环&#xff09;&#xff1f; 复杂度分析 头递归&#xff08;Head Recursion&#xff09; 树形递归&#xff08;Tree Recursion&#xff09; 线性递归&#xff08;Linear Recursion&#xff09;…...

【java】【服务器】线程上下文丢失 是指什么

目录 ■前言 ■正文开始 线程上下文的核心组成部分 为什么会出现上下文丢失&#xff1f; 直观示例说明 为什么上下文如此重要&#xff1f; 解决上下文丢失的关键 总结 ■如果我想在servlet中使用线程&#xff0c;代码应该如何实现 推荐方案&#xff1a;使用 ManagedE…...