当前位置: 首页 > news >正文

Python数据分析NumPy和pandas(二十三、数据清洗与预处理之五:pandas的分类类型数据)

pandas的分类类型数据(Categorical Data)

这次学习使用Categorical Data,在某些 pandas 操作中使用分类类型能实现更好的性能和减少内存使用。另外还学习一些工具,这些工具有助于在统计和机器学习应用程序中使用分类数据。

一.背景

通常,表中的列会包含一组具有非重复值的同类型实例,之前学习的 unique 和 value_counts 函数,它们使我们能够从数组中提取不同的值并分别计算它们的频率。

import numpy as np
import pandas as pdnp.random.seed(12345)
# []*2 表示重复两次
values = pd.Series(['apple', 'orange', 'apple', 'apple'] * 2)
print(values)# 使用unique()对values去重,输出一个列表
print(pd.unique(values))# 使用value_counts()对values中出现的不同值计算出现的频次(计数),输出一个Series
print(values.value_counts())

输出结果:

0     apple
1    orange
2     apple
3     apple
4     apple
5    orange
6     apple
7     apple
dtype: object
['apple' 'orange']
apple     6
orange    2
Name: count, dtype: int64

许多数据系统(用于数据仓库、统计计算或其他用途)已经开发了专门的方法来表示具有重复值的数据,以实现更高效的存储和计算。在数据仓库中,最佳实践是使用包含不同值的所谓维度表,并将主要观测值存储为引用维度表的整数键:

import numpy as np
import pandas as pd# []*2 表示重复两次
values = pd.Series([0, 1, 0, 0] * 2)
dim = pd.Series(['apple', 'orange'])# 可以使用 take() 方法恢复原来的 Series 字符串。
# 原来的Series字符串:pd.Series(['apple', 'orange', 'apple', 'apple'] * 2)
val_str = dim.take(values)print(values)
print(dim)
print(val_str)

 输出结果:

0    0
1    1
2    0
3    0
4    0
5    1
6    0
7    0
dtype: int64
0     apple
1    orange
dtype: object
0     apple
1    orange
0     apple
0     apple
0     apple
1    orange
0     apple
0     apple
dtype: object

这种整数表示形式称为 categorical 或 dictionary-encoded 表示形式(例如:上面的apple用0表示,orange用1表示)。不同值的数组可以称为数据的类别、字典或级别。这里,我们将使用分类和类别(categorical 和 categories)这两个术语。引用类别的整数值称为类别代码或简称代码。

在执行分析时,分类表示可以显著提高性能(简单理解:就是用整数值代替原值分析,类似于上面的示例用0代表apple,1代表orange)。另外还可以对类别执行转换,同时保持代码不变。

可以以相对较低的成本进行的一些示例转换包括:重命名类别;添加新类别而不更改现有类别的顺序或位置。

二.pandas 中的分类扩展类型

pandas 具有特殊的 Categorical 扩展类型,用于保存使用基于整数的 categorical 表示或编码的数据。这是一种流行的数据压缩技术,适用于多次出现相似值的数据,并且可以以较低的内存使用量提供明显更快的性能,尤其是对于字符串数据。看下面的代码示例:

import numpy as np
import pandas as pd# []*2 表示重复两次
fruits = ['apple', 'orange', 'apple', 'apple'] * 2
N = len(fruits)# 设置一个种子,为了每次运行获取相同的随机值
rng = np.random.default_rng(seed=12345)df = pd.DataFrame({'fruit': fruits, 'basket_id': np.arange(N), 'count': rng.integers(3, 15, size=N), 'weight': rng.uniform(0, 4, size=N)}, columns=['basket_id', 'fruit', 'count', 'weight'])
print(df)# df['fruit'] 是一个 Python 字符串对象的数组。我们可以通过如下调用将其转换为 categorical:
fruit_cat = df['fruit'].astype('category')
print(fruit_cat)

df输出:

 basket_idfruitcountweight
00apple111.564438
11orange51.331256
22apple122.393235
33apple60.746937
44apple52.691024
55orange123.767211
66apple100.992983
77apple113.795525

fruit_cat输出:

0 apple

1 orange

2 apple

3 apple

4 apple

5 orange

6 apple

7 apple

Name: fruit, dtype: category Categories (2, object): ['apple', 'orange'] 

fruit_cat 的值现在是 pandas.Categorical 的实例,可以通过 .array 属性访问:

import numpy as np
import pandas as pd# []*2 表示重复两次
fruits = ['apple', 'orange', 'apple', 'apple'] * 2
N = len(fruits)# 设置一个种子,为了每次运行获取相同的随机值
rng = np.random.default_rng(seed=12345)df = pd.DataFrame({'fruit': fruits, 'basket_id': np.arange(N), 'count': rng.integers(3, 15, size=N), 'weight': rng.uniform(0, 4, size=N)}, columns=['basket_id', 'fruit', 'count', 'weight'])
print(df)# df['fruit'] 是一个 Python 字符串对象的数组。我们可以通过如下调用将其转换为 categorical:
fruit_cat = df['fruit'].astype('category')
print(fruit_cat)c = fruit_cat.array
print(type(c))

type(c)输出:

pandas.core.arrays.categorical.Categorical

Categorical 对象具有 categories 和 codes 属性

import numpy as np
import pandas as pd# []*2 表示重复两次
fruits = ['apple', 'orange', 'apple', 'apple'] * 2
N = len(fruits)# 设置一个种子,为了每次运行获取相同的随机值
rng = np.random.default_rng(seed=12345)df = pd.DataFrame({'fruit': fruits, 'basket_id': np.arange(N), 'count': rng.integers(3, 15, size=N), 'weight': rng.uniform(0, 4, size=N)}, columns=['basket_id', 'fruit', 'count', 'weight'])
print(df)# df['fruit'] 是一个 Python 字符串对象的数组。我们可以通过如下调用将其转换为 categorical:
fruit_cat = df['fruit'].astype('category')
print(fruit_cat)c = fruit_cat.array
print(type(c))# Categorical 对象的 categories 和 codes 属性
print(c.categories)
print(c.codes)

c.categories 输出:

Index(['apple', 'orange'], dtype='object')

c.codes 输出:

array([0, 1, 0, 0, 0, 1, 0, 0], dtype=int8)

使用 categories 访问器会更方便,稍后在 “分类方法” 中学习使用。

在代码和类别之间进行映射的一个非常使用技巧是使用dict和enumerate,例如:

dict(enumerate(c.categories))

输出:{0: 'apple', 1: 'orange'}

可以将转换后的结果列赋值给DataFrame的相应列,使其转换为分类列;还可以用其他的Python序列类型直接创建 pandass.Categorical列。例如下面代码中的后5行:

import numpy as np
import pandas as pd# []*2 表示重复两次
fruits = ['apple', 'orange', 'apple', 'apple'] * 2
N = len(fruits)# 设置一个种子,为了每次运行获取相同的随机值
rng = np.random.default_rng(seed=12345)df = pd.DataFrame({'fruit': fruits, 'basket_id': np.arange(N), 'count': rng.integers(3, 15, size=N), 'weight': rng.uniform(0, 4, size=N)}, columns=['basket_id', 'fruit', 'count', 'weight'])
print(df)# df['fruit'] 是一个 Python 字符串对象的数组。我们可以通过如下调用将其转换为 categorical:
fruit_cat = df['fruit'].astype('category')
print(fruit_cat)c = fruit_cat.array
print(type(c))# Categorical 对象的 categories 和 codes 属性
print(c.categories)
print(c.codes)dict(enumerate(c.categories))df['fruit'] = df['fruit'].astype('category')
print(df['fruit'])my_categories = pd.Categorical(['foo', 'bar', 'baz', 'foo', 'bar'])
print(my_categories)

print(df['fruit']) 输出:

0     apple
1    orange
2     apple
3     apple
4     apple
5    orange
6     apple
7     apple
Name: fruit, dtype: category
Categories (2, object): ['apple', 'orange']

print(my_categories) 输出:

['foo', 'bar', 'baz', 'foo', 'bar']
Categories (3, object): ['bar', 'baz', 'foo']

如果从其他来源获取了分类编码数据,则可以使用替代 from_codes 构造函数,例如:

import numpy as np
import pandas as pdcategories = ['foo', 'bar', 'baz']
codes = [0, 1, 2, 0, 0, 1]
my_cats_2 = pd.Categorical.from_codes(codes, categories)
print(my_cats_2)

 输出:

['foo', 'bar', 'baz', 'foo', 'foo', 'bar']

Categories (3, object): ['foo', 'bar', 'baz']

除非明确指定,否则分类转换不假定类别的特定排序。因此,categories 数组的顺序可能会有所不同,具体取决于输入数据的顺序。但使用 from_codes 或任何其他构造函数时,可以指示类别有意义的排序:

import numpy as np
import pandas as pdcategories = ['foo', 'bar', 'baz']
codes = [0, 1, 2, 0, 0, 1]
ordered_cat = pd.Categorical.from_codes(codes, categories, ordered=True)
print(ordered_cat)

输出:

['foo', 'bar', 'baz', 'foo', 'foo', 'bar']
Categories (3, object): ['foo' < 'bar' < 'baz']

输出 [foo < bar < baz] 表示在排序中 'foo' 在 'bar' 之前,依此类推。另外,可以使用 as_ordered 对无序分类实例进行排序

import numpy as np
import pandas as pdcategories = ['foo', 'bar', 'baz']
codes = [0, 1, 2, 0, 0, 1]
my_cats_2 = pd.Categorical.from_codes(codes, categories)
print(my_cats_2.as_ordered())

用as_ordered() 输出:

['foo', 'bar', 'baz', 'foo', 'foo', 'bar']
Categories (3, object): ['foo' < 'bar' < 'baz']

最后要注意的是,分类数据不必是字符串,虽然上面我只学习展示了字符串示例。分类数组可以包含任何不可变的值类型。

三.使用 Categoricals 进行计算

与 unencoded 版本(如字符串数组)相比,在 pandas 中使用 Categorical 的行为方式通常相同。pandas 的某些功能(如 groupby 函数)在处理分类时性能更好,还有一些函数可以使用 ordered 标志。

下面学习一个示例,对一些随机数值数据使用 pandas.qcut 分箱函数,返回 pandas.Categorical:

import numpy as np
import pandas as pd# 设置一个种子,为了每次运行获取相同的随机值
rng = np.random.default_rng(seed=12345)
# 正态分布数据
draws = rng.standard_normal(1000)# 计算此数据draws的四分位数分箱并提取一些统计数据
bins = pd.qcut(draws, 4)
print(bins)

 print(bins)输出:

[(-3.121, -0.675], (0.687, 3.211], (-3.121, -0.675], (-0.675, 0.0134], (-0.675, 0.0134], ..., (0.0134, 0.687], (0.0134, 0.687], (-0.675, 0.0134], (0.0134, 0.687], (-0.675, 0.0134]]
Length: 1000
Categories (4, interval[float64, right]): [(-3.121, -0.675] < (-0.675, 0.0134] < (0.0134, 0.687] <
                                           (0.687, 3.211]]

下面我们给四分位数用labels参数指定名称,可能在数据分析或生成报表时更有用:

import numpy as np
import pandas as pd# 设置一个种子,为了每次运行获取相同的随机值
rng = np.random.default_rng(seed=12345)
# 正态分布数据
draws = rng.standard_normal(1000)# 计算此数据draws的四分位数分箱并提取一些统计数据,用labels指定四分位数名称
bins = pd.qcut(draws, 4, labels=['Q1', 'Q2', 'Q3', 'Q4'])
print(bins)

输出:

['Q1', 'Q4', 'Q1', 'Q2', 'Q2', ..., 'Q3', 'Q3', 'Q2', 'Q3', 'Q2']
Length: 1000
Categories (4, object): ['Q1' < 'Q2' < 'Q3' < 'Q4']

在用print(bins.codes[:10]) 输出看看:[0 3 0 1 1 0 0 2 2 0]

设置了labels的 bins 分类不包含边缘数据的信息,因此我们可以使用 groupby 来提取一些汇总统计信息:

import numpy as np
import pandas as pd# 设置一个种子,为了每次运行获取相同的随机值
rng = np.random.default_rng(seed=12345)
# 正态分布数据
draws = rng.standard_normal(1000)# 计算此数据draws的四分位数分箱并提取一些统计数据,用labels指定四分位数名称
bins = pd.qcut(draws, 4, labels=['Q1', 'Q2', 'Q3', 'Q4'])
bins = pd.Series(bins, name='quartile')
results = (pd.Series(draws).groupby(bins).agg(['count', 'min', 'max']).reset_index())
print(results)
print(results['quartile'])

results输出:

  quartile  count       min       max
0       Q1    250 -3.119609 -0.678494
1       Q2    250 -0.673305  0.008009
2       Q3    250  0.018753  0.686183
3       Q4    250  0.688282  3.211418

results['quartile'] 输出:

0    Q1
1    Q2
2    Q3
3    Q4
Name: quartile, dtype: category
Categories (4, object): ['Q1' < 'Q2' < 'Q3' < 'Q4']

results中的 'quartile' 列保留 bin 中的原始分类信息,包括排序。

四.使用分类(categoricals)提高性能

在前面,我说过分类类型可以提高性能和内存使用,我们看一些例子,考虑一些具有 1000 万个元素和少量不同类别的 Series:

import numpy as np
import pandas as pd# 设置一个种子,为了每次运行获取相同的随机值
rng = np.random.default_rng(seed=12345)
N = 10_000_000
labels = pd.Series(['foo', 'bar', 'baz', 'qux'] * (N // 4))# 将标签转换为分类标签:
categories = labels.astype('category')# 用以下代码来比较labels和categories的内存使用情况
lab_mem = labels.memory_usage(deep=True)
cat_men = categories.memory_usage(deep=True)
print(lab_mem, '\t', cat_men)

内存对比输出:600000132        10000544 ,从输出可以看出categories对内存的使用明显要小。当然,转换为类别(categories)不是免费的,但是只需要一次性消耗。使用 categoricals 时,GroupBy 操作可以明显加快速度,因为基础算法使用基于整数的 codes 数组,而不是字符串数组。大家可以用labels.value_counts()和categories.value_counts()消耗的时间做个对比,会发现categories.value_counts()耗时比labels.value_counts()少指数级甚至少的更多。

五.分类的方法

包含分类数据的序列具有几个类似于 Series.str 专用字符串方法的特殊方法。特殊访问器属性 cat 提供对 categorical 方法的访问。

import numpy as np
import pandas as pd# 设置一个种子,为了每次运行获取相同的随机值
rng = np.random.default_rng(seed=12345)s = pd.Series(['a', 'b', 'c', 'd'] * 2)
cat_s = s.astype('category')
print(cat_s)
print(cat_s.cat.codes)
print(cat_s.cat.categories)# 假设我们知道此数据的实际类别集超出了数据中观察到的四个值,可以使用 set_categories 方法来更改它们
actual_categories = ['a', 'b', 'c', 'd', 'e']
cat_s2 = cat_s.cat.set_categories(actual_categories)
print(cat_s2)print(cat_s.value_counts())
print(cat_s2.value_counts())

以上代码输出:

0    a
1    b
2    c
3    d
4    a
5    b
6    c
7    d
dtype: category
Categories (4, object): ['a', 'b', 'c', 'd']
0    0
1    1
2    2
3    3
4    0
5    1
6    2
7    3
dtype: int8
Index(['a', 'b', 'c', 'd'], dtype='object')
0    a
1    b
2    c
3    d
4    a
5    b
6    c
7    d
dtype: category
Categories (5, object): ['a', 'b', 'c', 'd', 'e']
a    2
b    2
c    2
d    2
Name: count, dtype: int64
a    2
b    2
c    2
d    2
e    0
Name: count, dtype: int64

在大型数据集中,分类通常用作节省内存和提高性能的便捷工具。筛选大型 DataFrame 或 Series 后,许多类别可能不会显示在数据中。为了帮助解决这个问题,我们可以使用 remove_unused_categories 方法来修剪未观察到的类别:

import numpy as np
import pandas as pds = pd.Series(['a', 'b', 'c', 'd'] * 2)
cat_s = s.astype('category')cat_s3 = cat_s[cat_s.isin(['a', 'b'])]
print(cat_s3)
print(cat_s3.cat.remove_unused_categories())

cat_s3输出:

0    a
1    b
4    a
5    b
dtype: category
Categories (4, object): ['a', 'b', 'c', 'd']

cat_s3.cat.remove_unused_categories() 输出:

0    a
1    b
4    a
5    b
dtype: category
Categories (2, object): ['a', 'b']

下图是可用分类方法的列表:

2561134fa94a4956a45ae7caf72c5297.png

六.创建用于建模的虚拟变量 

当您使用统计或机器学习工具时,通常会将分类数据转换为虚拟变量,也称为独热编码。这涉及创建一个 DataFrame,其中包含每个不同类别的列;这些列包含给定类别的出现次数,出现一次为 1,否则为 0。使用pandas.get_dummies 函数将此一维分类数据转换为包含虚拟变量的 DataFrame:

import numpy as np
import pandas as pdcat_s = pd.Series(['a', 'b', 'c', 'd'] * 2, dtype='category')
# 这里要指定dtype类型,否则会返回布尔型,这是因为新版pandas的原因
pd.get_dummies(cat_s, dtype=float)
print(a)

 输出结果:

 abcd
01.00.00.00.0
10.01.00.00.0
20.00.01.00.0
30.00.00.01.0
41.00.00.00.0
50.01.00.00.0
60.00.01.00.0
70.00.00.01.0

总结:有效的数据准备可以让我们花更多时间分析数据,减少准备分析的时间,从而显著提高工作效率。数据清洗与预处理的学习先到这,学的内容要不断的实操练习才会熟练。后面我将继续学习数据整理:连接、合并和重塑等。

 

相关文章:

Python数据分析NumPy和pandas(二十三、数据清洗与预处理之五:pandas的分类类型数据)

pandas的分类类型数据&#xff08;Categorical Data&#xff09; 这次学习使用Categorical Data&#xff0c;在某些 pandas 操作中使用分类类型能实现更好的性能和减少内存使用。另外还学习一些工具&#xff0c;这些工具有助于在统计和机器学习应用程序中使用分类数据。 一.背…...

redis源码系列--(二)--multi/exec/eval命令执行流程

本文主要记录multi/exec、eval、redis执行lua脚本的源码流程 redis在exec之前&#xff0c;所有queued的命令是没有执行的&#xff0c;&#xff01;&#xff01;&#xff01;在执行时会通过检测client是否被打上CLIENT_DIRTY_CAS标记来判断[watch后,exec时]时间段内是否有key被…...

【力扣打卡系列】移动零(双指针)

坚持按题型打卡&刷&梳理力扣算法题系列&#xff0c;语言为go&#xff0c;Day19 移动零&#xff08;双指针&#xff09; 题目描述 解题思路 p和q同时从起点移动&#xff0c;p每次都&#xff0c;q仅在交换时&#xff0c;p遇到非零数时与p值交换&#xff01;&#xff01;…...

无源元器件-电容选型参数总结

🏡《总目录》 目录 1,概述2,电容选型参数2.1,电容值(Capacitance)2.2,额定电压(Rated Voltage )2.3,外观(Appearance)2.4,尺寸(Dimension)2.5,耐压(Voltage Proof)2.6,绝缘电阻(Insulation Resistance)2.7,耗散因子或耗散系数(IQ or Dissipation Facto…...

Linux下的socket编程

概述 下面是一个通用的server端程序源码&#xff0c;用于实现两个client之间的通信。 功能 1、接收user的命令cmd消息&#xff0c;并将cmd消息发送到dev&#xff1b; 2、接收dev的应答ack消息&#xff0c;并将ack消息发送到user&#xff1b; 架构实现 通过6个线程实现。 …...

【算法】Floyd多源最短路径算法

目录 一、概念 二、思路 三、代码 一、概念 在前面的学习中&#xff0c;我们已经接触了Dijkstra、Bellman-Ford等单源最短路径算法。但首先我们要知道何为单源最短路径&#xff0c;何为多源最短路径 单源最短路径&#xff1a;从图中选取一点&#xff0c;求这个点到图中其他…...

iOS SmartCodable 替换 HandyJSON 适配记录

前言 HandyJSON群里说建议不要再使用HandyJSON&#xff0c;我最终选择了SmartCodable 来替换&#xff0c;原因如下&#xff1a; 首先按照 SmartCodable 官方教程替换 大概要替换的内容如图&#xff1a; 详细的替换教程请前往&#xff1a;使用SmartCodable 平替 HandyJSON …...

使用 axios 拦截器实现请求和响应的统一处理(附常见面试题)

在现代前端开发中&#xff0c;我们经常需要向服务器发送 HTTP 请求&#xff0c;并根据响应内容做不同的处理。axios 是一个流行的 HTTP 库&#xff0c;提供了 拦截器 功能&#xff0c;可以在请求和响应阶段插入自定义逻辑&#xff0c;这使得我们在处理认证、错误提示等场景时更…...

阿里 Sentinel

1、什么是sentinel&#xff1f; sentinel顾名思义&#xff1a;卫兵&#xff1b;在Redis中叫做哨兵&#xff0c;用于监控主从切换&#xff0c;但是在微服务中叫做流量防卫兵。 Sentinel 以流量为切入点&#xff0c;从流量控制、熔断降级、系统负载保护等多个维度保护服务的稳定…...

【点云网络】 pointnet 和 pointnet++

这两个网络都是斯坦福大学的一个团队提出的 我先先看一下pointnet的网络架构,这个网络比较经典&#xff0c;是2016年提出的&#xff1a; PointNet 是一个专门用于点云数据处理的神经网络。它的设计目的是直接操作不规则的点云数据&#xff0c;而无需将点云数据转换为规则网格或…...

.net core mvc 控制器中页面跳转

方式一&#xff1a; 在控制器的方法内部结尾使用 return View(); 来打开与方法同名的页面&#xff0c;如&#xff1a; public ActionResult Login() { return View(); } 该写法打开 Login 页面。 方式二&#xff1a; 可以添加参数来显式地指定要跳转的页面&#xff0…...

大学适合学C语言还是Python?

在大学学习编程时&#xff0c;选择C语言还是Python&#xff0c;这主要取决于你的学习目标、专业需求以及个人兴趣。以下是对两种语言的详细比较&#xff0c;帮助你做出更明智的选择&#xff1a; C语言 优点&#xff1a; 底层编程&#xff1a;C语言是一种底层编程语言&#x…...

跳表原理课堂笔记

课程地址 跳表是一种基于随机化的有序数据结构&#xff0c;它提出是为了赋予有序单链表以 O(logn) 的快速查找和插入的能力 创建 首先在头部创建一个 sentinel 节点&#xff0c;然后在 L1 层采用“抛硬币”的方式来决定 L0 层的指针是否增长到 L1 层 例如上图中&#xff0c;L…...

Windows系统使用OpenSSL生成自签名证书

Nginx服务器添加SSL证书。 要在Windows系统的Nginx Web服务器上使用OpenSSL生成证书&#xff0c;并确保该证书能在局域网内被计算机信任&#xff0c;你可以按照以下详细步骤进行操作&#xff1a; 一、生成证书 下载并安装OpenSSL&#xff1a; 从OpenSSL的官方网站下载适用于Wi…...

定位new的表达式

这里面会涉及内存池&#xff0c;所谓的内存池就是池化技术&#xff0c;让我们使用的更加方便&#xff0c;里面有1.线存池和连接池。 如果想要高频释放内存池&#xff0c;要针对系统有个堆&#xff0c;而堆事针对我们需要的生擒一个特例&#xff0c;和我们家庭里面妈妈给爸爸的…...

矩阵特殊打印方式

小伙伴们大家好&#xff0c;好几天没更新了&#xff0c;主要有个比赛。从今天起继续给大家更新&#xff0c;今天给大家带来一种新的题型&#xff1a;矩阵特殊打印方式。 螺旋打印矩阵 解题思路 首先给大家看一下什么是螺旋方式打印&#xff1a; 就像这样一直转圈圈。 我想大多…...

OCC 拟合的平面转换为有界平面

问题&#xff1a;针对导入的部分面无法获取大小&#xff0c;同时也无法判断点是否在面上。但是OBB可以获取大小 解决方法&#xff1a;通过面拟合转换gp_Pln&#xff0c;然后获取面的内外边&#xff0c;重新修剪生成新的TopoDS_Face 疑问&#xff1a;本人对OCC中各种面的特性不…...

Nginx性能优化的几个方法

文章目录 一 Nginx 配置优化二 缓存利用三 压缩策略四 安全性优化修改配置文件修改 Nginx 源码使用第三方模块 五 监控和日志优化六 系统层面优化七 故障转移优化 小伙伴们平时使用 Nginx 是否有进行过性能优化呢&#xff1f;还是软件装好了就直接使用呢&#xff1f; 今天松哥和…...

Unity性能优化5【物理篇】

1.刚体的碰撞检测属性首选离散型 离散碰撞的缺点是小物体快速移动时&#xff0c;有丢失碰撞的风险。此下拉菜单中&#xff0c;越下面的选项碰撞检测频率越高&#xff0c;性能消耗也显著增加。因此在选择碰撞检测类型时尽量选择离散型。 2.优化碰撞矩阵 合理标记碰撞矩阵可以减…...

我的工具列表

开发工具 名称备注Visual Studio微软开发工具集Visual Studio Code代码编辑器Qt CreatorQt IDEQt Design StudioQt 界面设计器linguistQt 国际化翻译PyCharmPython IDEVMware Workstation Pro虚拟机MATLAB数据计算和仿真Keil单片机 IDENavicat Premium数据库管理MobaXterm远程…...

基于大模型的 UI 自动化系统

基于大模型的 UI 自动化系统 下面是一个完整的 Python 系统,利用大模型实现智能 UI 自动化,结合计算机视觉和自然语言处理技术,实现"看屏操作"的能力。 系统架构设计 #mermaid-svg-2gn2GRvh5WCP2ktF {font-family:"trebuchet ms",verdana,arial,sans-…...

脑机新手指南(八):OpenBCI_GUI:从环境搭建到数据可视化(下)

一、数据处理与分析实战 &#xff08;一&#xff09;实时滤波与参数调整 基础滤波操作 60Hz 工频滤波&#xff1a;勾选界面右侧 “60Hz” 复选框&#xff0c;可有效抑制电网干扰&#xff08;适用于北美地区&#xff0c;欧洲用户可调整为 50Hz&#xff09;。 平滑处理&…...

安宝特方案丨XRSOP人员作业标准化管理平台:AR智慧点检验收套件

在选煤厂、化工厂、钢铁厂等过程生产型企业&#xff0c;其生产设备的运行效率和非计划停机对工业制造效益有较大影响。 随着企业自动化和智能化建设的推进&#xff0c;需提前预防假检、错检、漏检&#xff0c;推动智慧生产运维系统数据的流动和现场赋能应用。同时&#xff0c;…...

使用van-uploader 的UI组件,结合vue2如何实现图片上传组件的封装

以下是基于 vant-ui&#xff08;适配 Vue2 版本 &#xff09;实现截图中照片上传预览、删除功能&#xff0c;并封装成可复用组件的完整代码&#xff0c;包含样式和逻辑实现&#xff0c;可直接在 Vue2 项目中使用&#xff1a; 1. 封装的图片上传组件 ImageUploader.vue <te…...

Nginx server_name 配置说明

Nginx 是一个高性能的反向代理和负载均衡服务器&#xff0c;其核心配置之一是 server 块中的 server_name 指令。server_name 决定了 Nginx 如何根据客户端请求的 Host 头匹配对应的虚拟主机&#xff08;Virtual Host&#xff09;。 1. 简介 Nginx 使用 server_name 指令来确定…...

数据库分批入库

今天在工作中&#xff0c;遇到一个问题&#xff0c;就是分批查询的时候&#xff0c;由于批次过大导致出现了一些问题&#xff0c;一下是问题描述和解决方案&#xff1a; 示例&#xff1a; // 假设已有数据列表 dataList 和 PreparedStatement pstmt int batchSize 1000; // …...

根据万维钢·精英日课6的内容,使用AI(2025)可以参考以下方法:

根据万维钢精英日课6的内容&#xff0c;使用AI&#xff08;2025&#xff09;可以参考以下方法&#xff1a; 四个洞见 模型已经比人聪明&#xff1a;以ChatGPT o3为代表的AI非常强大&#xff0c;能运用高级理论解释道理、引用最新学术论文&#xff0c;生成对顶尖科学家都有用的…...

全面解析各类VPN技术:GRE、IPsec、L2TP、SSL与MPLS VPN对比

目录 引言 VPN技术概述 GRE VPN 3.1 GRE封装结构 3.2 GRE的应用场景 GRE over IPsec 4.1 GRE over IPsec封装结构 4.2 为什么使用GRE over IPsec&#xff1f; IPsec VPN 5.1 IPsec传输模式&#xff08;Transport Mode&#xff09; 5.2 IPsec隧道模式&#xff08;Tunne…...

Python 实现 Web 静态服务器(HTTP 协议)

目录 一、在本地启动 HTTP 服务器1. Windows 下安装 node.js1&#xff09;下载安装包2&#xff09;配置环境变量3&#xff09;安装镜像4&#xff09;node.js 的常用命令 2. 安装 http-server 服务3. 使用 http-server 开启服务1&#xff09;使用 http-server2&#xff09;详解 …...

在树莓派上添加音频输入设备的几种方法

在树莓派上添加音频输入设备可以通过以下步骤完成&#xff0c;具体方法取决于设备类型&#xff08;如USB麦克风、3.5mm接口麦克风或HDMI音频输入&#xff09;。以下是详细指南&#xff1a; 1. 连接音频输入设备 USB麦克风/声卡&#xff1a;直接插入树莓派的USB接口。3.5mm麦克…...