当前位置: 首页 > news >正文

使用 OpenCV 实现图像的透视变换

概述

在计算机视觉领域,经常需要对图像进行各种几何变换,如旋转、缩放和平移等。其中,透视变换(Perspective Transformation)是一种非常重要的变换方式,它能够模拟三维空间中的视角变化,例如从不同角度观察同一个物体时所看到的不同效果。本文将详细介绍如何使用 OpenCV 库在 Python 中实现图像的透视变换。

环境准备

在开始之前,请确保已经安装了 OpenCV 库。如果没有安装,可以通过以下命令进行安装:

pip install opencv-python
运行效果

在这里插入图片描述

示例代码详解
import cv2
import numpy as npdef func():"""读取图像并进行透视变换。:return:"""# 读取图像img = cv2.imread('./resources/card.jpeg')print(type(img))  # 输出图像数据类型print(img.shape)  # 输出图像尺寸信息# 定义目标宽度和高度width, height = 300, 200# 原始图像上的四个点坐标pts1 = np.float32([[94, 302],[205, 243],[152, 369],[265, 300]])# 目标图像上的四个点坐标pts2 = np.float32([[0, 0],[width, 0],[0, height],[width, height]])# 计算透视变换矩阵matrix = cv2.getPerspectiveTransform(pts1, pts2)# 应用透视变换img_output = cv2.warpPerspective(img, matrix, (width, height))# 展示原始图像和变换后的图像cv2.imshow('Original Image', img)cv2.imshow('Transformed Image', img_output)# 等待用户按键后退出cv2.waitKey(0)if __name__ == '__main__':func()
代码解析
  1. 导入必要的库

    import cv2
    import numpy as np
    
    • cv2:OpenCV 的 Python 接口。
    • numpy:用于处理图像数据的数组。
  2. 定义函数 func

    def func():"""读取图像并进行透视变换。:return:"""
    
  3. 读取图像

    img = cv2.imread('./resources/card.jpeg')
    print(type(img))  # 输出图像数据类型
    print(img.shape)  # 输出图像尺寸信息
    
    • 使用 cv2.imread() 读取图像文件。
    • print(type(img))print(img.shape) 分别用于检查图像数据类型和图像尺寸。
  4. 定义目标宽度和高度

    width, height = 300, 200
    
  5. 定义图像上的四个点坐标

    pts1 = np.float32([[94, 302],[205, 243],[152, 369],[265, 300]
    ])
    
    • pts1 表示在原始图像上的四个点坐标,这些坐标通常代表图像中的某个矩形区域。
  6. 定义目标图像上的四个点坐标

    pts2 = np.float32([[0, 0],[width, 0],[0, height],[width, height]
    ])
    
    • pts2 表示变换后目标图像上的四个点坐标,这里我们把原来的矩形区域拉伸成了一个矩形。
  7. 计算透视变换矩阵

    matrix = cv2.getPerspectiveTransform(pts1, pts2)
    
    • 使用 cv2.getPerspectiveTransform() 获取从原始图像到目标图像的变换矩阵。
  8. 应用透视变换

    img_output = cv2.warpPerspective(img, matrix, (width, height))
    
    • 使用 cv2.warpPerspective() 应用透视变换,得到变换后的图像。
  9. 展示图像

    cv2.imshow('Original Image', img)
    cv2.imshow('Transformed Image', img_output)
    
    • 使用 cv2.imshow() 分别展示原始图像和变换后的图像。
  10. 等待用户按键后退出

    cv2.waitKey(0)
    
    • cv2.waitKey(0) 使得程序等待用户按键后退出。

获取pts1数据的方式:
手动选取:可以使用图像查看工具(例如Photoshop,GIMP等)打开图像,然后手动测量并记录感兴趣区域的四个角的像素坐标。选取坐标时,确保它们形成一个闭合四边形。

编程自动识别:如果目标区域的边缘特征明显,也可以使用图像处理技术(如边缘检测、角点检测等)自动识别这些角点,以便复用或动态生成pts1的值。

实验和调整:在实际使用中,可能需要经过几次实验和调整,以获取最佳的透视变换效果。

 在这段代码中,pts1的具体值:
pts1 = np.float32([[94, 302],[205, 243],[152, 369],[265, 300]
])

这些坐标值为示例数据,意味着选择了原图中具体的一块区域的四个点,具体点的位置需要基于图像的内容而定。在实际应用中,你会根据你希望进行变换的区域选择具体的坐标。

总结

本文通过一个具体的代码示例,详细介绍了如何使用 OpenCV 在 Python 中实现图像的透视变换。透视变换是一种强大的工具,可以帮助我们处理图像中的非平行投影,从而在不同的视角下获取一致的图像。希望本文能帮助你在实际项目中更好地应用这一技术。


以上就是关于使用 OpenCV 实现图像的透视变换的技术讲解,希望对你的学习和实践有所帮助!如果有任何疑问或需要进一步的帮助,请随时提问!

相关文章:

使用 OpenCV 实现图像的透视变换

概述 在计算机视觉领域,经常需要对图像进行各种几何变换,如旋转、缩放和平移等。其中,透视变换(Perspective Transformation)是一种非常重要的变换方式,它能够模拟三维空间中的视角变化,例如从…...

openGauss数据库-头歌实验1-4 数据库及表的创建

一、创建数据库 (一)任务描述 本关任务:创建指定数据库。 (二)相关知识 数据库其实就是可以存放大量数据的仓库,学习数据库我们就从创建一个数据库开始吧。 为了完成本关任务,你需要掌握&a…...

吉利极氪汽车嵌入式面试题及参考答案

inline 的作用 inline 是 C++ 中的一个关键字。它主要用于函数,目的是建议编译器将函数体插入到调用该函数的地方,而不是像普通函数调用那样进行跳转。 从性能角度来看,当一个函数被标记为 inline 后,在编译阶段,编译器可能会将函数的代码直接复制到调用它的位置。这样做…...

pycharm中的服务是什么?

在PyCharm中,服务是指允许在PyCharm中运行的一种功能或插件。服务可以是内置的,也可以是通过插件安装的。 一些常见的PyCharm服务包括: 调试服务:PyCharm提供了全功能的调试工具,可以帮助开发人员通过设置断点、监视变…...

[Unity Demo]从零开始制作空洞骑士Hollow Knight第十七集:制作第二个BOSS燥郁的毛里克

提示:文章写完后,目录可以自动生成,如何生成可参考右边的帮助文档 文章目录 前言一、制作游戏第二个BOSS燥郁的毛里克 1.导入素材和制作相关动画1.5处理玩家受到战吼相关行为逻辑处理2.制作相应的行为控制和生命系统管理3.制作战斗场景和战斗…...

深度解析阿里的Sentinel

1、前言 这是《Spring Cloud 进阶》专栏的第五篇文章,这篇文章介绍一下阿里开源的流量防卫兵Sentinel,一款非常优秀的开源项目,经过近10年的双十一的考验,非常成熟的一款产品。 文章目录如下: 2、什么是sentinel&…...

Linux系统-日志轮询(logrotate)

作者介绍:简历上没有一个精通的运维工程师。希望大家多多关注作者,下面的思维导图也是预计更新的内容和当前进度(不定时更新)。 这是Linux进阶部分的最后一大章。讲完这一章以后,我们Linux进阶部分讲完以后,我们的Linux操作部分就…...

机器学习在时间序列预测中的应用与实现——以电力负荷预测为例(附代码)

📝个人主页🌹:一ge科研小菜鸡-CSDN博客 🌹🌹期待您的关注 🌹🌹 1. 引言 随着数据采集技术的发展,时间序列数据在各个领域中的应用越来越广泛。时间序列预测旨在基于过去的时间数据来…...

白杨SEO:百度在降低个人备案类网站搜索关键词排名和流量?怎样应对?【参考】

很久没有写百度或者网站这块内容了,一是因为做百度网站朋友越来越少,不管是个人还是企业;二是百度上用户搜索与百度给到网站的流量都越来越少。 为什么想到今天又来写这个呢?因为上个月有个朋友来咨询我说网站百度排名全没了&…...

前端实现json动画(附带示例)

前端实现json动画(附带示例) 使用lottie制作动画。1.json动画2.实现效果3.git仓库4.运行5.json动画天堂6.代码7. 经常使用的方法 使用lottie制作动画。 1.json动画 废话不多说,直接看效果图2.实现效果 3.git仓库 https://gitee.com/chaiach…...

AI 写作(一):开启创作新纪元(1/10)

一、AI 写作:重塑创作格局 在当今数字化高速发展的时代,AI 写作正以惊人的速度重塑着创作格局。AI 写作在现代社会中占据着举足轻重的地位,发挥着不可替代的作用。 随着信息的爆炸式增长,人们对于内容的需求日益旺盛。AI 写作能够…...

C#-类:索引器

索引器作用:可以让我们以中括号的形式访问自定义类中的元素。 规则自己定,访问时和数组一样 适用于,在类中有数组变量时使用,可以方便的访问、进行逻辑处理 可以重载,结构体也支持索引器 一:索引器的语法…...

Neo4j Cypher WHERE子句详解 - 初学者指南

Neo4j Cypher WHERE子句详解 - 初学者指南 前言1. WHERE子句基础1.1 WHERE子句的本质1.2 示例数据 2. 基本用法2.1 节点属性过滤2.2 关系属性过滤 3. 高级过滤技巧3.1 字符串匹配3.2 正则表达式3.3 属性存在性检查 4. 列表和范围操作4.1 IN操作符4.2 范围查询 5. 空值处理5.1 默…...

【CSS】标准怪异盒模型

概念 CSS 盒模型本质上是一个盒子,盒子包裹着HTML 元素,盒子由四个属性组成,从内到外分别是:content 内容、padding 内填充、border 边框、外边距 margin 盒模型的分类 W3C 盒子模型(标准盒模型) IE 盒子模型(怪异盒模型) 两种…...

栈详解

目录 栈栈的概念及结构栈的实现数组栈的实现数组栈功能的实现栈的初始化void STInit(ST* pst)初始化情况一初始化情况二 代码栈的插入void STPush(ST* pst, STDataType x)代码 栈的删除void STPop(ST* pst)代码 栈获取数据STDataType STTop(ST* pst)代码 判断栈是否为空bool ST…...

硬盘 <-> CPU, CPU <-> GPU 数据传输速度

1. 硬盘 <-> CPU 数据传输速度 import time import os# 定义文件大小和测试文件路径 file_size 1 * 1024 * 1024 * 100 # 100 MB 的文件大小 file_path "test_file.bin"# 创建一个测试文件并测量写入速度 def test_write_speed():data os.urandom(file_si…...

数据编排与ETL有什么关系?

数据编排作为近期比较有热度的一个话题&#xff0c;讨论度比较高&#xff0c;同时数据编排的出现也暗示着数字化进程的自动化发展。在谈及数据编排时&#xff0c;通常也会谈到ETL&#xff0c;这两个东西有相似点也有不同点。 数据编排和ETL&#xff08;提取、转换、加载&#x…...

来了解一下!!!——React

React 是一个用于构建用户界面的 JavaScript 库&#xff0c;特别适合用于创建单页面应用程序&#xff08;SPA&#xff09;。它由 Facebook 维护&#xff0c;并且拥有一个活跃的社区&#xff0c;这使得 React 成为了目前最流行的前端框架之一。以下是关于 React 的一些重要信息和…...

用vite创建项目

一. vite vue2 1. 全局安装 create-vite npm install -g create-vite 2. 创建项目 进入你想要创建项目的文件夹下 打开 CMD 用 JavaScript create-vite my-vue2-project --template vue 若用 TypeScript 则 create-vite my-vue2-project --template vue-ts 这里的 …...

json-server的使用(根据json数据一键生成接口)

一.使用目的 在前端开发初期&#xff0c;后端 API 可能还未完成&#xff0c;json-server 可以快速创建模拟的 RESTful API&#xff0c;帮助前端开发者进行开发和测试。 二.安装 npm install json-server //局部安装npm i json-server -g //全局安装 三.使用教程 1.准备一…...

mongodb源码分析session执行handleRequest命令find过程

mongo/transport/service_state_machine.cpp已经分析startSession创建ASIOSession过程&#xff0c;并且验证connection是否超过限制ASIOSession和connection是循环接受客户端命令&#xff0c;把数据流转换成Message&#xff0c;状态转变流程是&#xff1a;State::Created 》 St…...

基于Flask实现的医疗保险欺诈识别监测模型

基于Flask实现的医疗保险欺诈识别监测模型 项目截图 项目简介 社会医疗保险是国家通过立法形式强制实施&#xff0c;由雇主和个人按一定比例缴纳保险费&#xff0c;建立社会医疗保险基金&#xff0c;支付雇员医疗费用的一种医疗保险制度&#xff0c; 它是促进社会文明和进步的…...

数据链路层的主要功能是什么

数据链路层&#xff08;OSI模型第2层&#xff09;的核心功能是在相邻网络节点&#xff08;如交换机、主机&#xff09;间提供可靠的数据帧传输服务&#xff0c;主要职责包括&#xff1a; &#x1f511; 核心功能详解&#xff1a; 帧封装与解封装 封装&#xff1a; 将网络层下发…...

(转)什么是DockerCompose?它有什么作用?

一、什么是DockerCompose? DockerCompose可以基于Compose文件帮我们快速的部署分布式应用&#xff0c;而无需手动一个个创建和运行容器。 Compose文件是一个文本文件&#xff0c;通过指令定义集群中的每个容器如何运行。 DockerCompose就是把DockerFile转换成指令去运行。 …...

华硕a豆14 Air香氛版,美学与科技的馨香融合

在快节奏的现代生活中&#xff0c;我们渴望一个能激发创想、愉悦感官的工作与生活伙伴&#xff0c;它不仅是冰冷的科技工具&#xff0c;更能触动我们内心深处的细腻情感。正是在这样的期许下&#xff0c;华硕a豆14 Air香氛版翩然而至&#xff0c;它以一种前所未有的方式&#x…...

【JVM】Java虚拟机(二)——垃圾回收

目录 一、如何判断对象可以回收 &#xff08;一&#xff09;引用计数法 &#xff08;二&#xff09;可达性分析算法 二、垃圾回收算法 &#xff08;一&#xff09;标记清除 &#xff08;二&#xff09;标记整理 &#xff08;三&#xff09;复制 &#xff08;四&#xff…...

数学建模-滑翔伞伞翼面积的设计,运动状态计算和优化 !

我们考虑滑翔伞的伞翼面积设计问题以及运动状态描述。滑翔伞的性能主要取决于伞翼面积、气动特性以及飞行员的重量。我们的目标是建立数学模型来描述滑翔伞的运动状态,并优化伞翼面积的设计。 一、问题分析 滑翔伞在飞行过程中受到重力、升力和阻力的作用。升力和阻力与伞翼面…...

mac:大模型系列测试

0 MAC 前几天经过学生优惠以及国补17K入手了mac studio,然后这两天亲自测试其模型行运用能力如何&#xff0c;是否支持微调、推理速度等能力。下面进入正文。 1 mac 与 unsloth 按照下面的进行安装以及测试&#xff0c;是可以跑通文章里面的代码。训练速度也是很快的。 注意…...

负载均衡器》》LVS、Nginx、HAproxy 区别

虚拟主机 先4&#xff0c;后7...

从零手写Java版本的LSM Tree (一):LSM Tree 概述

&#x1f525; 推荐一个高质量的Java LSM Tree开源项目&#xff01; https://github.com/brianxiadong/java-lsm-tree java-lsm-tree 是一个从零实现的Log-Structured Merge Tree&#xff0c;专为高并发写入场景设计。 核心亮点&#xff1a; ⚡ 极致性能&#xff1a;写入速度超…...