当前位置: 首页 > news >正文

基于Liquid State Machine的时间序列预测:利用储备池计算实现高效建模

Liquid State Machine (LSM) 是一种 脉冲神经网络 (Spiking Neural Network, SNN) ,在计算神经科学和机器学习领域中得到广泛应用,特别适用于处理 时变或动态数据。它是受大脑自然信息处理过程启发而提出的一种 脉冲神经网络

设想你正处于一片平静的湖面,四周环绕着高山,你向水中投入一块石头。涟漪开始形成,向四周扩散。此时,在附近再投入一块石头。第二块石头产生的涟漪与第一块s石头产生的涟漪相互交叠,在水面上形成复杂多变的图案。这种图案并非随机产生;它包含了每块石头落水的位置、时间、大小,甚至每次撞击释放的能量等信息。

利用这种涟漪效应来理解和解决问题。在某种程度上,这就是 Liquid State Machines (LSMs) 的工作原理。

由于其处理时间信息的独特方法和特殊的网络结构,Liquid State Machine (LSM) 模型与传统神经网络存在显著差异。

LSM简介

标准神经网络,如前馈网络,本身并不处理时间信息。循环神经网络(Recurrent Neural Network, RNN),如长短期记忆网络(Long Short-Term Memory, LSTM),通过反馈回路捕获序列信息,但需要对每一步进行显式训练。相比之下,LSM使用随机连接的神经元储备池(“液体”)将输入数据转化为高维动态状态。储备池的设计目的是随时间"回响"输入信号,被动捕捉时间模式而无需直接训练。这种结构以稀疏、高效的方式捕获输入数据的时间依赖性。

传统模型如RNN、LSTM和GRU(Gated Recurrent Unit)依赖于通过时间的反向传播(Backpropagation Through Time, BPTT)算法进行训练,这可能 计算量很大 ,而且经常出现梯度消失和梯度爆炸等问题。在LSM中,只对读出层进行训练,通常使用线性回归模型(例如岭回归),而储备池保持固定不变。这种方法 降低了计算负荷 ,简化了训练过程,因为只需要优化输出层的参数。

尽管RNN和LSTM可以对 时间模式 进行建模,但除非经过明确调优和多次迭代训练,否则这些模型在处理高度混沌或非线性系统时表现欠佳。得益于储备池的随机连接和丰富的非线性内部动力学,LSM可以有效处理 高度复杂和混沌的数据 。这种结构特别有利于需要对时间输入的微小变化保持敏感的任务,例如语音识别或混沌时间序列预测。

RNN主要用于顺序预测任务,而LSM则可以同时执行分类和预测任务。

代码实现

我们将使用Python构建一个时间序列数据的预测模型。

安装必要的库

 !pip install reservoirpy matplotlib numpy

导入库并加载数据集

 import numpy as np  import matplotlib.pyplot as plt  from reservoirpy.nodes import Reservoir, Ridge  from reservoirpy.datasets import mackey_glass  # 加载Mackey-Glass数据集data = mackey_glass(n_timesteps=1000, tau=17)  # 可视化时间序列数据plt.plot(data)  plt.title("Mackey-Glass Timeseries Data")  plt.xlabel("Time Step")  plt.ylabel("Value")  plt.show()

Mackey-Glass数据集 是一个在非线性系统建模和预测研究中经常使用的混沌时间序列。它模拟了一个生理反馈回路,根据延迟参数的不同可以表现出混沌特性。这使得它成为评估需要捕获复杂时间依赖性模型的理想数据集。

数据预处理

 # 对数据进行归一化处理data = (data - np.mean(data)) / np.std(data)

划分训练集和测试集

 # 将数据集划分为训练集和测试集split_ratio = 0.8  split_idx = int(split_ratio * len(data))  train_data, test_data = data[:split_idx], data[split_idx:]  

定义储备池参数

 # 构建并配置Liquid State Machine(储备池)reservoir_size = 500  # 储备池中的神经元数量

LSM模型由一个储备层和一个读出层组成。储备池 在高维空间中捕获时间动力学信息,读出层 对这些动力学信息进行回归。

     # 创建储备池和读出层reservoir = Reservoir(units=reservoir_size, lr=0.1, input_scaling=0.5, sr=0.9)  # 将'spectral_radius'参数简写为'sr'readout = Ridge(ridge=1e-6)

通过将数据输入到储备池神经元,可以生成高维状态,捕获输入数据的时间依赖性。线性回归读出层(

Ridge

)将储备池状态映射到下一个时间步的值。

现在,创建完整的LSM模型。

     # 连接各层,构建LSM模型model = reservoir >> readout

使用训练数据的储备池状态训练模型,目标是预测下一个时间步的值。

 # 调整数据形状以适应训练X_train = train_data[:-1].reshape(-1, 1)  # 输入数据y_train = train_data[1:]  # 目标数据(下一个时间步的值)# 训练模型model = model.fit(X_train, y_train, warmup=100)

使用训练好的模型对测试集进行预测,并将预测结果与真实值进行对比。

 # 生成预测结果X_test = test_data[:-1].reshape(-1, 1)  y_test = test_data[1:]  predictions = model.run(X_test)#绘制预测结果与真实测试数据的对比图plt.figure(figsize=(12, 6))plt.plot(y_test, label="Actual", color='b')plt.plot(predictions, label="Predicted", color='r')plt.title("Mackey-Glass Prediction with Liquid State Machine")plt.xlabel("Time Step")plt.ylabel("Value")plt.legend()plt.show()

通过观察储备池神经元的激活情况,可以深入了解储备池如何将时间序列输入转化为高维状态。

     # 通过观察部分神经元的激活情况来分析储备池动力学plt.figure(figsize=(10, 6))  states = reservoir.run(X_train)  for i in range(5):  # 绘制前5个神经元的激活情况plt.plot(states[:, i], label=f"Neuron {i+1}")  plt.title("Reservoir Neuron Activations (Subset)")  plt.xlabel("Time Step")  plt.ylabel("Activation")  plt.legend()  plt.show()

LSM最初的设计灵感来自脉冲神经元,它对于需要实时处理和高时间精度的任务非常有效。在计算效率和训练复杂度要求较高的场景下,LSM也是一种强大的技术选择。

总结

这篇文章介绍了一种基于Liquid State Machine (LSM)模型的时间序列预测方法。LSM是一种脉冲神经网络,特别适用于处理时变或动态数据。与传统的神经网络模型相比,LSM通过随机连接的储备池捕获时间依赖性,并且只需训练读出层,大大降低了计算负荷。文章详细阐述了LSM的工作原理,并使用Python和ReservoirPy库实现了一个完整的时间序列预测案例。以Mackey-Glass数据集为例,展示了数据预处理、模型构建、训练和预测的完整流程。同时,通过可视化储备池神经元的激活情况,直观地展现了LSM将时间序列转化为高维状态的过程。文章表明,LSM模型在处理复杂时间序列和实时预测任务方面具有显著优势,为时间序列预测提供了一种高效、可扩展的新思路。

https://avoid.overfit.cn/post/b09f504dbeff4ca199a9fe1d0847f632

作者:Nivedita Bhadra

相关文章:

基于Liquid State Machine的时间序列预测:利用储备池计算实现高效建模

Liquid State Machine (LSM) 是一种 脉冲神经网络 (Spiking Neural Network, SNN) ,在计算神经科学和机器学习领域中得到广泛应用,特别适用于处理 时变或动态数据。它是受大脑自然信息处理过程启发而提出的一种 脉冲神经网络 。 设想你正处于一片平静的湖面,四周环绕着高山,你向…...

oracle使用CTE递归分解字符串

oracle使用CTE递归分解字符串 背景 给定一个不定长度字符串 并且以,分割例如 ‘1,2,3,4’ 使用sql查询 返回1,2,3,4四行 如果‘1,2’ 则返回 1,2 两行 使用sql实现 实…...

华为HarmonyOS借助AR引擎帮助应用实现虚拟与现实交互的能力5-识别平面语义

对于检测到的平面,您可以通过AR Engine识别该平面的语义,包括墙面、地面、座椅面、桌面、天花板、门面、窗面、床面。 创建AR会话 创建AR会话并配置为平面语义识别模式。 AREngine_ARSession *arSession nullptr;// 创建AR会话。HMS_AREngine_ARSessi…...

MAC 安装 brew及其常用命令

​文章:Mac安装brew的四种方法(指定能行) 以下是在 Mac 上使用 Homebrew 清理缓存和无用包的详细指南: 1. 查看系统状态 # 诊断系统问题 brew doctor# 查看已安装的包 brew list# 查看系统占用空间 brew cleanup -n # 预览需要…...

nVisual标签打印模块的部署与使用

部署 标签打印模块部署需要注意的是 前置条件 标签打印模块是以外部模块形式依附于nVisual主模块的,所以要先部署好nVisual主模块的前后端程序。 部署文件下载 标签打印模块也分前端文件和后端文件,从微盘->软件发布->nVisual official relea…...

python NLTK快速入门

目录 NLTK简介安装NLTK主要模块及用法 词汇与语料库分词与词性标注句法分析情感分析文本分类综合实例:简单的文本分析项目总结 1. NLTK简介 NLTK(Natural Language Toolkit)是一个强大的Python库,专门用于自然语言处理&#xff…...

技术速递|.NET 9 中 System.Text.Json 的新增功能

作者:Eirik Tsarpalis - 首席软件工程师 排版:Alan Wang System.Text.Json 的9.0 版本包含许多功能,主要侧重于 JSON 架构和智能应用程序支持。它还包括一些备受期待的增强功能,例如可空引用类型支持、自定义枚举成员名称、无序元…...

LLM 使用 Elastic 实现可观察性:Azure OpenAI (二)

作者:来自 Elastic Muthukumar Paramasivam•Lalit Satapathy 我们为 Azure OpenAI GA 包添加了更多功能,现在提供提示和响应监控、PTU 部署性能跟踪和计费洞察! 我们最近宣布了 Azure OpenAI 集成的 GA。你可以在我们之前的博客 LLM 可观察性…...

数据库基础(2) . 安装MySQL

0.增加右键菜单选项 添加 管理员cmd 到鼠标右键 运行 reg文件 在注册表中添加信息 这样在右键菜单中就有以管理员身份打开命令行的选项了 1.获取安装程序 网址: https://dev.mysql.com/downloads/mysql/ 到官网下载MySQL8 的zip包, 然后解压 下载后的包为: mysql-8.0.16-…...

高效自动化测试,引领汽车座舱新纪元——实车篇

引言 作为智能网联汽车的核心组成部分,智能座舱不仅是驾驶者与车辆互动的桥梁,更是个性化、智能化体验的源泉。实车测试作为验证智能座舱功能实现、用户体验、行车安全及法规符合性的关键环节,能够最直接地模拟真实驾驶场景,确保…...

GitHub中搜索项目方法

0 Preface/Foreword 1 搜索方法 1.1 项目介绍 如上截图,一个项目包含的基本信息: 项目名项目简介项目介绍Watch数量,接收邮件提醒Star数量,关注,subscribeFork数量,在repo中创建分支 1.2 限定项目名查找…...

浅谈串口服务器的作用

串口服务器是一种网络设备,它允许通过TCP/IP网络远程访问串行设备。它的作用主要包括: 1、远程访问:通过将串行通信转换为以太网通信,串口服务器使得远程访问串行设备成为可能,这对于远程监控和控制非常有用。 2、数据…...

Spark 的Standalone集群环境安装与测试

目录 一、Standalone 集群环境安装 (一)理解 Standalone 集群架构 (二)Standalone 集群部署 二、打开监控界面 (一)master监控界面 (二)日志服务监控界面 三、集群的测试 &a…...

在Java中,实现数据库连接通常使用JDBC

学习总结 1、掌握 JAVA入门到进阶知识(持续写作中……) 2、学会Oracle数据库入门到入土用法(创作中……) 3、手把手教你开发炫酷的vbs脚本制作(完善中……) 4、牛逼哄哄的 IDEA编程利器技巧(编写中……) 5、面经吐血整理的 面试技…...

Git 测验

Git 测验 引言 Git 是一款强大的分布式版本控制系统,它由Linus Torvalds创建,主要用于帮助多人协作开发项目。Git 的设计目标是速度、数据完整性以及分布式支持。自从2005年发布以来,Git 已经成为全球最流行的版本控制系统之一,被广泛应用于各种规模的软件开发项目中。 …...

L1G3000 提示工程(Prompt Engineering)

什么是Prompt(提示词)? Prompt是一种灵活、多样化的输入方式,可以用于指导大语言模型生成各种类型的内容。什么是提示工程? 提示工程是一种通过设计和调整输入(Prompts)来改善模型性能或控制其输出结果的技术。 六大基本原则: 指令要清晰提供参考内容复杂的任务拆…...

【SQL50】day 1

目录 1.可回收且低脂的产品 2.寻找用户推荐人 3.使用唯一标识码替换员工ID 4.产品销售分析 I 5.有趣的电影 6.平均售价 7.每位教师所教授的科目种类的数量 8.平均售价 1.可回收且低脂的产品 # Write your MySQL query statement below select product_id from Products w…...

jmeter脚本-请求体设置变量and请求体太长的处理

目录 1、查询接口 1.1 准备组织列表的TXT文件,如下: 1.2 添加 CSV数据文件设置 ,如下: 1.3 接口请求体设置变量,如下: 2、创建接口 2.1 见1.1 2.2 见1.2 2.3 准备创建接口的请求体TXT文件&#xff…...

基于java+SpringBoot+Vue的旅游管理系统设计与实现

项目运行 环境配置: Jdk1.8 Tomcat7.0 Mysql HBuilderX(Webstorm也行) Eclispe(IntelliJ IDEA,Eclispe,MyEclispe,Sts都支持)。 项目技术: Springboot mybatis Maven mysql5.7或8.0等等组成&#x…...

SD3模型的部署(本地部署)

文章目录 模型权重的下载需要注意的地方推理代码生成的效果图 模型的结构图 模型权重的下载 SD3:huggingface的权重 我们需要把huggingfaceface下的这些文件都下载到一个文件加下,然后在后面的pipe StableDiffusion3Pipeline.from_pretrained(“stabil…...

讲解DFD和ERD

DFD、ERD 1. DFD(数据流图,Data Flow Diagram)DFD的主要元素:DFD的层次结构:举例:1. 上下文图:2. 分解图: DFD的应用: 2. ERD(实体关系图,Entity …...

TVM计算图分割--LayerGroup

文章目录 介绍Layergroup调研TVM中的LayergroupTVM Layergroup进一步优化MergeCompilerRegions处理菱形结构TVM中基于Pattern得到的子图TPUMLIR地平线的Layergroup介绍 Layergroup目前没找到严格、明确的定义,因为不同厂家的框架考虑的因素不同,但是基本逻辑是差不多的。一般…...

OPPO开源Diffusion多语言适配器—— MultilingualSD3-adapter 和 ChineseFLUX.1-adapter

MultilingualSD3-adapter 是为 SD3 量身定制的多语言适配器。 它源自 ECCV 2024 的一篇题为 PEA-Diffusion 的论文。ChineseFLUX.1-adapter是为Flux.1系列机型量身定制的多语言适配器,理论上继承了ByT5,可支持100多种语言,但在中文方面做了额…...

Spring 设计模式之责任链模式

Spring 设计模式之责任链模式 责任链模式用到的场景java举例 责任链模式 责任链模式(Chain of Responsibility)是一种行为设计模式,它允许你将请求沿着处理者链进行传递。 每个处理者可以对请求进行处理,也可以将请求传递给链中的…...

简单的 docker 部署ELK

简单的 docker 部署ELK 这是我的运维同事部署ELK的文档,我这里记录转载一下 服务规划 架构: Filebeat->kafka->logstash->ES kafka集群部署参照: kafka集群部署 部署服务程序路径/数据目录端口配置文件elasticsearch/data/elasticsearch9200/data/elas…...

四款主流的3D创作和游戏开发软件的核心特点和关系

四款主流的3D创作和游戏开发软件的核心特点和关系 3D建模软件: Blender: 开源免费,功能全面优点: 完全免费持续更新优化社区活跃,学习资源丰富功能全面(建模、动画、渲染等) 缺点: 学习曲线陡峭界面操作…...

聚划算!Transformer-LSTM、Transformer、CNN-LSTM、LSTM、CNN五模型多变量回归预测

聚划算!Transformer-LSTM、Transformer、CNN-LSTM、LSTM、CNN五模型多变量回归预测 目录 聚划算!Transformer-LSTM、Transformer、CNN-LSTM、LSTM、CNN五模型多变量回归预测预测效果基本介绍程序设计参考资料 预测效果 基本介绍 聚划算!Tran…...

信息安全工程师(76)网络安全应急响应技术原理与应用

前言 网络安全应急响应(Network Security Incident Response)是针对潜在或已发生的网络安全事件而采取的网络安全措施,旨在降低网络安全事件所造成的损失并迅速恢复受影响的系统和服务。 一、网络安全应急响应概述 定义:网络安全应…...

使用 OpenCV 实现图像的透视变换

概述 在计算机视觉领域,经常需要对图像进行各种几何变换,如旋转、缩放和平移等。其中,透视变换(Perspective Transformation)是一种非常重要的变换方式,它能够模拟三维空间中的视角变化,例如从…...

openGauss数据库-头歌实验1-4 数据库及表的创建

一、创建数据库 (一)任务描述 本关任务:创建指定数据库。 (二)相关知识 数据库其实就是可以存放大量数据的仓库,学习数据库我们就从创建一个数据库开始吧。 为了完成本关任务,你需要掌握&a…...