PostgreSQL技术内幕17:PG分区表
文章目录
- 0.简介
- 1.概念介绍
- 2.分区表技术产生的背景
- 3.分区类型及使用方式
- 4.实现原理
- 4.1 分区表创建
- 4.2 分区表查询
- 4.3 分区表写入
- 4.4 分区表删除
0.简介
本文主要介绍PG中分区表的概念,产生分区表技术的原因,使用方式和其内部实现原理,旨在能对PG分区表技术有一个系统的说明。
1.概念介绍
分区表是数据库用于管理大量数据的一种技术,它允许将一个大表分割成多个小表,这些小表在物理上是独立的,但在逻辑上作为一个整体被查询和更新。分区表的主要优势在于提高查询性能,特别是当查询集中在少数几个分区时。此外,分区表还可以简化数据的批量删除和加载,以及将不常用的数据迁移到成本较低的存储介质上实现冷热分离。
1)主表/父表/Master Table:该表是创建子表的模板。它是一个正常的普通表,但正常情况下它并不储存任何数据。
2)子表/分区表/Child Table/Partition Table:这些表继承并属于一个主表。子表中存储所有的数据。主表与分区表属于一对多的关系,也就是说,一个主表包含多个分区表,而一个分区表只从属于一个主表
2.分区表技术产生的背景
在使用数据库过程中,随着时间的推移,每张表数据量会不断增加,造成查询速度越来越慢,在分区表之前有很多查询的技术去优化它,比如添加特殊的索引,将磁盘分区(把日志文件放到单独的磁盘分区),调整参数等等。这些优化技术都能对查询性能做出或多或少的提升,但其并没有对于表特点以及局部性的原理进行合理应用,因为对于很多应用来说,许多历史数据对于查询可能并没有太多用处,或者是某一列是特定值时是更为关系的数据,如果能够将不常用数据进行隐藏,就能大大提高查询速度,分区表就是为了解决这个问题而产生的。比如可以按照时间作为分区键进行分区将新老数据分离。
3.分区类型及使用方式
PG 10以后支持三种分区,以下都使用主流的使用方式声明式分区(还有表继承)进行说明:
1)范围(Range)分区
CREATE TABLE students (grade INTEGER) PARTITION BY RANGE(grade);
CREATE TABLE stu_fail PARTITION OF students FOR VALUES FROM (MINVALUE) TO (60);
CREATE TABLE stu_pass PARTITION OF students FOR VALUES FROM (60) TO (MAXVALUE);\d+ studentsTable "public.students"Column | Type | Collation | Nullable | Default | Storage | Stats target | Description
--------+---------+-----------+----------+---------+---------+--------------+-------------grade | integer | | | | plain | |
Partition key: RANGE (grade)
Partitions: stu_fail FOR VALUES FROM (MINVALUE) TO (60),stu_pass FOR VALUES FROM (60) TO (MAXVALUE)\d+ stu_failTable "public.stu_fail"Column | Type | Collation | Nullable | Default | Storage | Stats target | Description
--------+---------+-----------+----------+---------+---------+--------------+-------------grade | integer | | | | plain | |
Partition of: students FOR VALUES FROM (MINVALUE) TO (60)
Partition constraint: ((grade IS NOT NULL) AND (grade < 60))
可以看出,其中最大值是小于关系,不是小于等于关系。
2)列表(List)分区
列表分区明确指定根据某字段的某个具体值进行分区,默认分区(可选值)保存不属于任何指定分区的列表值。
CREATE TABLE students (status character varying(30)) PARTITION BY LIST(status);
CREATE TABLE stu_active PARTITION OF students FOR VALUES IN ('ACTIVE');
CREATE TABLE stu_exp PARTITION OF students FOR VALUES IN ('EXPIRED');
CREATE TABLE stu_others PARTITION OF students DEFAULT;\d+ studentsTable "public.students"Column | Type | Collation | Nullable | Default | Storage | Stats target | Description
--------+-----------------------+-----------+----------+---------+----------+--------------+-------------status | character varying(30) | | | | extended | |
Partition key: LIST (status)
Partitions: stu_active FOR VALUES IN ('ACTIVE'),stu_exp FOR VALUES IN ('EXPIRED'),stu_others DEFAULT\d+ stu_others;Table "public.stu_others"Column | Type | Collation | Nullable | Default | Storage | Stats target | Description
--------+-----------------------+-----------+----------+---------+----------+--------------+-------------status | character varying(30) | | | | extended | |
Partition of: students DEFAULT
Partition constraint: (NOT ((status IS NOT NULL) AND ((status)::text = ANY (ARRAY['ACTIVE'::character varying(30), 'EXPIRED'::character varying(30)]))))
3)哈希(Hash)分区
通过对每个分区使用取模和余数来创建hash分区,modulus指定了对N取模,而remainder指定了除完后的余数。
CREATE TABLE students (id INTEGER) PARTITION BY HASH(id);
CREATE TABLE stu_part1 PARTITION OF students FOR VALUES WITH (modulus 3, remainder 0);
CREATE TABLE stu_part2 PARTITION OF students FOR VALUES WITH (modulus 3, remainder 1);
CREATE TABLE stu_part3 PARTITION OF students FOR VALUES WITH (modulus 3, remainder 2);\d+ students;Table "public.students"Column | Type | Collation | Nullable | Default | Storage | Stats target | Description
--------+---------+-----------+----------+---------+---------+--------------+-------------id | integer | | | | plain | |
Partition key: HASH (id)
Partitions: stu_part1 FOR VALUES WITH (modulus 3, remainder 0),stu_part2 FOR VALUES WITH (modulus 3, remainder 1),stu_part3 FOR VALUES WITH (modulus 3, remainder 2)\d+ stu_part1;Table "public.stu_part1"Column | Type | Collation | Nullable | Default | Storage | Stats target | Description
--------+---------+-----------+----------+---------+---------+--------------+-------------id | integer | | | | plain | |
Partition of: students FOR VALUES WITH (modulus 3, remainder 0)
Partition constraint: satisfies_hash_partition('16439'::oid, 3, 0, id)
PG分区还支持创建子分区:LIST-LIST,LIST-RANGE,LIST-HASH,RANGE-RANGE,RANGE-LIST,RANGE-HASH,HASH-HASH,HASH-LIST和HASH-RANGE;以及和普通表之间互相转换,DETACH PARTITION可以将分区表转换为普通表,而attach partition可以将普通表附加到分区表上。
4.实现原理
4.1 分区表创建
分区表创建相对简单,对PG来说实际是一张逻辑表对应多张物理表,下面简单看创建时其分区表相关的调用流程。
--> transformPartitionBound --> RelationGetPartitionKey--> get_partition_strategy--> transformPartitionBoundValue--> transformPartitionRangeBounds--> validateInfiniteBounds--> check_new_partition_bound--> StorePartitionBound // Update pg_class tuple of rel to store the partition bound and set relispartition to true--> StoreCatalogInheritance // 向系统表pg_inherits插入信息// 处理stmt->partspec--> transformPartitionSpec--> ComputePartitionAttrs--> StorePartitionKey // 向pg_partitioned_table中插入分区键等信息
4.2 分区表查询
分区表查询是要根据条件查询一定数量的子表然后进行返回,其主要分为三步:
1)识别分区表并找到所有的分区子表
/** expand_inherited_tables* Expand each rangetable entry that represents an inheritance set* into an "append relation". At the conclusion of this process,* the "inh" flag is set in all and only those RTEs that are append* relation parents.*/
void
expand_inherited_tables(PlannerInfo *root)
{Index nrtes;Index rti;ListCell *rl;/** expand_inherited_rtentry may add RTEs to parse->rtable. The function is* expected to recursively handle any RTEs that it creates with inh=true.* So just scan as far as the original end of the rtable list.*/nrtes = list_length(root->parse->rtable);rl = list_head(root->parse->rtable);for (rti = 1; rti <= nrtes; rti++){RangeTblEntry *rte = (RangeTblEntry *) lfirst(rl);expand_inherited_rtentry(root, rte, rti);rl = lnext(rl);}
}
2)根据约束条件识别需要查询的分区,也就是分区裁剪,只读取需要的分区;
prune_append_rel_partitions* Process rel's baserestrictinfo and make use of quals which can be* evaluated during query planning in order to determine the minimum set* of partitions which must be scanned to satisfy these quals. Returns* the matching partitions in the form of a Relids set containing the* partitions' RT indexes.** Callers must ensure that 'rel' is a partitioned table.*/
Relids
prune_append_rel_partitions(RelOptInfo *rel)
{Relids result;List *clauses = rel->baserestrictinfo;List *pruning_steps;GeneratePruningStepsContext gcontext;PartitionPruneContext context;Bitmapset *partindexes;int i;Assert(clauses != NIL);Assert(rel->part_scheme != NULL);/* If there are no partitions, return the empty set */if (rel->nparts == 0)return NULL;/** Process clauses to extract pruning steps that are usable at plan time.* If the clauses are found to be contradictory, we can return the empty* set.*/gen_partprune_steps(rel, clauses, PARTTARGET_PLANNER,&gcontext);if (gcontext.contradictory)return NULL;pruning_steps = gcontext.steps;/* Set up PartitionPruneContext */context.strategy = rel->part_scheme->strategy;context.partnatts = rel->part_scheme->partnatts;context.nparts = rel->nparts;context.boundinfo = rel->boundinfo;context.partcollation = rel->part_scheme->partcollation;context.partsupfunc = rel->part_scheme->partsupfunc;context.stepcmpfuncs = (FmgrInfo *) palloc0(sizeof(FmgrInfo) *context.partnatts *list_length(pruning_steps));context.ppccontext = CurrentMemoryContext;/* These are not valid when being called from the planner */context.partrel = NULL;context.planstate = NULL;context.exprstates = NULL;/* Actual pruning happens here. */partindexes = get_matching_partitions(&context, pruning_steps);/* Add selected partitions' RT indexes to result. */i = -1;result = NULL;while ((i = bms_next_member(partindexes, i)) >= 0)result = bms_add_member(result, rel->part_rels[i]->relid);return result;
}
3)对结果集执行APPEND,作为最终结果输出,这和其他表append操作一致,使用ExecInitAppend和ExecAppend函数。
/* ----------------------------------------------------------------* ExecAppend** Handles iteration over multiple subplans.* ----------------------------------------------------------------*/
static TupleTableSlot *
ExecAppend(PlanState *pstate)
{AppendState *node = castNode(AppendState, pstate);if (node->as_whichplan < 0){/** If no subplan has been chosen, we must choose one before* proceeding.*/if (node->as_whichplan == INVALID_SUBPLAN_INDEX &&!node->choose_next_subplan(node))return ExecClearTuple(node->ps.ps_ResultTupleSlot);/* Nothing to do if there are no matching subplans */else if (node->as_whichplan == NO_MATCHING_SUBPLANS)return ExecClearTuple(node->ps.ps_ResultTupleSlot);}for (;;){PlanState *subnode;TupleTableSlot *result;CHECK_FOR_INTERRUPTS();/** figure out which subplan we are currently processing*/Assert(node->as_whichplan >= 0 && node->as_whichplan < node->as_nplans);subnode = node->appendplans[node->as_whichplan];/** get a tuple from the subplan*/result = ExecProcNode(subnode);if (!TupIsNull(result)){/** If the subplan gave us something then return it as-is. We do* NOT make use of the result slot that was set up in* ExecInitAppend; there's no need for it.*/return result;}/* choose new subplan; if none, we're done */if (!node->choose_next_subplan(node))return ExecClearTuple(node->ps.ps_ResultTupleSlot);}
}
4.3 分区表写入
分区表写入分为两个阶段,一个是查找到要写入的分区,然后就是正常去做写入,下面来看查找分区的函数。
/** ExecPrepareTupleRouting --- prepare for routing one tuple** Determine the partition in which the tuple in slot is to be inserted,* and modify mtstate and estate to prepare for it.** Caller must revert the estate changes after executing the insertion!* In mtstate, transition capture changes may also need to be reverted.** Returns a slot holding the tuple of the partition rowtype.*/
static TupleTableSlot *
ExecPrepareTupleRouting(ModifyTableState *mtstate,EState *estate,PartitionTupleRouting *proute,ResultRelInfo *targetRelInfo,TupleTableSlot *slot)
{ModifyTable *node;int partidx;ResultRelInfo *partrel;HeapTuple tuple;/** Determine the target partition. If ExecFindPartition does not find a* partition after all, it doesn't return here; otherwise, the returned* value is to be used as an index into the arrays for the ResultRelInfo* and TupleConversionMap for the partition.*/partidx = ExecFindPartition(targetRelInfo,proute->partition_dispatch_info,slot,estate);Assert(partidx >= 0 && partidx < proute->num_partitions);/** Get the ResultRelInfo corresponding to the selected partition; if not* yet there, initialize it.*/partrel = proute->partitions[partidx];if (partrel == NULL)partrel = ExecInitPartitionInfo(mtstate, targetRelInfo,proute, estate,partidx);/** Check whether the partition is routable if we didn't yet** Note: an UPDATE of a partition key invokes an INSERT that moves the* tuple to a new partition. This check would be applied to a subplan* partition of such an UPDATE that is chosen as the partition to route* the tuple to. The reason we do this check here rather than in* ExecSetupPartitionTupleRouting is to avoid aborting such an UPDATE* unnecessarily due to non-routable subplan partitions that may not be* chosen for update tuple movement after all.*/if (!partrel->ri_PartitionReadyForRouting){/* Verify the partition is a valid target for INSERT. */CheckValidResultRel(partrel, CMD_INSERT);/* Set up information needed for routing tuples to the partition. */ExecInitRoutingInfo(mtstate, estate, proute, partrel, partidx);}/** Make it look like we are inserting into the partition.*/estate->es_result_relation_info = partrel;/* Get the heap tuple out of the given slot. */tuple = ExecMaterializeSlot(slot);/** If we're capturing transition tuples, we might need to convert from the* partition rowtype to parent rowtype.*/if (mtstate->mt_transition_capture != NULL){if (partrel->ri_TrigDesc &&partrel->ri_TrigDesc->trig_insert_before_row){/** If there are any BEFORE triggers on the partition, we'll have* to be ready to convert their result back to tuplestore format.*/mtstate->mt_transition_capture->tcs_original_insert_tuple = NULL;mtstate->mt_transition_capture->tcs_map =TupConvMapForLeaf(proute, targetRelInfo, partidx);}else{/** Otherwise, just remember the original unconverted tuple, to* avoid a needless round trip conversion.*/mtstate->mt_transition_capture->tcs_original_insert_tuple = tuple;mtstate->mt_transition_capture->tcs_map = NULL;}}if (mtstate->mt_oc_transition_capture != NULL){mtstate->mt_oc_transition_capture->tcs_map =TupConvMapForLeaf(proute, targetRelInfo, partidx);}/** Convert the tuple, if necessary.*/ConvertPartitionTupleSlot(proute->parent_child_tupconv_maps[partidx],tuple,proute->partition_tuple_slot,&slot);/* Initialize information needed to handle ON CONFLICT DO UPDATE. */Assert(mtstate != NULL);node = (ModifyTable *) mtstate->ps.plan;if (node->onConflictAction == ONCONFLICT_UPDATE){Assert(mtstate->mt_existing != NULL);ExecSetSlotDescriptor(mtstate->mt_existing,RelationGetDescr(partrel->ri_RelationDesc));Assert(mtstate->mt_conflproj != NULL);ExecSetSlotDescriptor(mtstate->mt_conflproj,partrel->ri_onConflict->oc_ProjTupdesc);}return slot;
}
4.4 分区表删除
分区表的删除即为先删除其分区,然后整体删除。
相关文章:

PostgreSQL技术内幕17:PG分区表
文章目录 0.简介1.概念介绍2.分区表技术产生的背景3.分区类型及使用方式4.实现原理4.1 分区表创建4.2 分区表查询4.3 分区表写入4.4 分区表删除 0.简介 本文主要介绍PG中分区表的概念,产生分区表技术的原因,使用方式和其内部实现原理,旨在能…...

群控系统服务端开发模式-应用开发-上传工厂开发
现在的文件、图片等上传基本都在使用oss存储。而现在常用的oss存储有阿里云、腾讯云、七牛云、华为云等,但是用的最多的还是前三种。而我主要封装的是本地存储、阿里云存储、腾讯云存储、七牛云存储。废话不多说,直接上传设计图及说明,就一目…...

【Docker系列】指定系统平台拉取 openjdk:8 镜像
💝💝💝欢迎来到我的博客,很高兴能够在这里和您见面!希望您在这里可以感受到一份轻松愉快的氛围,不仅可以获得有趣的内容和知识,也可以畅所欲言、分享您的想法和见解。 推荐:kwan 的首页,持续学…...

语音识别:docker部署FunASR以及springboot集成funasr
内容摘选自: https://github.com/modelscope/FunASR/blob/main/runtime/docs/SDK_advanced_guide_offline_zh.md FunASR FunASR是一个基础语音识别工具包,提供多种功能,包括语音识别(ASR)、语音端点检测(VAD…...

Rust项目结构
文章目录 一、module模块1.文件内的module 二、模块化项目结构1.关于module2.各个模块之间互相引用 三、推荐项目结构1.实例 参考 一、module模块 1.文件内的module 关键字:mod 引入模块中的方法 usemod名字:方法名usemod名字.*写全路径 二、模块化项…...

计算并联电阻的阻值
计算并联电阻的阻值 C语言代码C代码Java代码Python代码 💐The Begin💐点点关注,收藏不迷路💐 对于阻值为r1和r2的电阻,其并联电阻阻值公式计算如下: R1/(1/r11/r2) 输入 两个电阻阻抗大小,浮…...
MySQL符号类型(详细)
在 MySQL 中,符号可以分为几种主要类型,以下是所有符号类型的小写分类: 1. 占位符 ?:用于准备语句中的占位符,表示将来要替换的值。 2. 分隔符 ;:表示 sql 语句的结束。 ,:用于分隔列、值或…...

Angular引用控件类
说明: angular 在一个控件类里面,引入另外一个控件类,这样做的好处,就是代码分离,当你一个页面存在多少类似于独立的界面时,可以使用这种方式,分离代码 更好维护程序 效果图: step…...

stm32 踩坑笔记
串口问题: 问题:会改变接收缓冲的下一个字节 串口的初始化如下,位长度选择了9位。因为要奇偶校验,要选择9位。但是接收有用数据只用到1个字节。 问题原因: 所以串口接收时会把下一个数据更改...
文件上传和文件包含
声明: 本文章只是适用于网络安全教学,请自觉遵守网络安全法,严禁用于非法途径,若读者做出来任何危害网络安全的行为,后果自负,均与本人无关. 文件上传: 大部分的网站和应用系统都有上传的功能,如用户头像上传,图片上传,文档上传…...

[Unity Demo]从零开始制作空洞骑士Hollow Knight第十八集补充:制作空洞骑士独有的EventSystem和InputModule
提示:文章写完后,目录可以自动生成,如何生成可参考右边的帮助文档 文章目录 前言一、制作空洞骑士独有的EventSystem和InputModule总结 前言 hello大家好久没见,之所以隔了这么久才更新并不是因为我又放弃了这个项目,而…...

yelp数据集上试验SVD,SVDPP,PMF,NMF 推荐算法
SVD、SVD、PMF 和 NMF 是几种常见的推荐算法,它们主要用于协同过滤和矩阵分解方法来生成个性化推荐。下面是对每种算法的简要介绍: 1. SVD(Singular Value Decomposition) 用途:SVD 是一种矩阵分解技术,通…...

计算机视觉常用数据集Cityscapes的介绍、下载、转为YOLO格式进行训练
我在寻找Cityscapes数据集的时候花了一番功夫,因为官网下载需要用公司或学校邮箱邮箱注册账号,等待审核通过后才能进行下载数据集。并且一开始我也并不了解Cityscapes的格式和内容是什么样的,现在我弄明白后写下这篇文章,用于记录…...
Flink和Spark在实时计算方面有何异同
Flink和Spark在实时计算方面既有相似之处,也存在显著的差异。以下是对它们之间异同的详细分析: 一、设计理念与世界观 Flink: 专注于流处理,认为批是流的特例。数据流分为有限流(Bounded)和无限流…...

纵然千万数据流逝,唯独vector长存
公主请阅 1.vector的一些方法1vector和stringpush_back 插入以及三种遍历数组的方式一些方法vector中的一些常见的方法1. push_back()2. pop_back()3. size()4. clear()5. empty()6. resize()7. insert()8. erase()9. at()10. front和 back()11. data()12. capacity()13. shrin…...
【LeetCode】【算法】739. 每日温度
LeetCode 739. 每日温度 题目描述 给定一个整数数组 temperatures ,表示每天的温度,返回一个数组 answer ,其中 answer[i] 是指对于第 i 天,下一个更高温度出现在几天后。如果气温在这之后都不会升高,请在该位置用 0…...

2025年知识管理新方案:十款前沿知识库搭建工具详解
随着企业信息化和智能化的发展,知识管理已成为提升企业竞争力的关键要素。一个高效的知识库不仅能促进内部沟通,还能展示企业的专业形象。以下是2025年十款前沿知识库搭建工具的详解。 1. HelpLook AI知识库 HelpLook AI知识库是一款专注于为企业提供高…...
WebSocket实现消息实时推送
文章目录 websocket介绍特点工作原理 用websocket实现实时推送引入依赖WebSocket 函数定义变量声明初始化 WebSocket 连接WebSocket 连接的初始化和事件处理连接打开事件接收消息处理连接关闭和重连机制心跳机制使用 WebSocket代码完整显示 websocket介绍 WebSocket 是一种网络…...

flink 内存配置(三):设置JobManager内存
flink 内存配置(一):设置Flink进程内存 flink 内存配置(二):设置TaskManager内存 flink 内存配置(三):设置JobManager内存 flink 内存配置(四)…...
蓝桥杯 Python组-神奇闹钟(datetime库)
神奇闹钟 传送门: 0神奇闹钟 - 蓝桥云课 问题描述 小蓝发现了一个神奇的闹钟,从纪元时间(1970 年 11 日 00:00:00)开始,每经过 x 分钟,这个闹钟便会触发一次闹铃 (…...

网络六边形受到攻击
大家读完觉得有帮助记得关注和点赞!!! 抽象 现代智能交通系统 (ITS) 的一个关键要求是能够以安全、可靠和匿名的方式从互联车辆和移动设备收集地理参考数据。Nexagon 协议建立在 IETF 定位器/ID 分离协议 (…...

eNSP-Cloud(实现本地电脑与eNSP内设备之间通信)
说明: 想象一下,你正在用eNSP搭建一个虚拟的网络世界,里面有虚拟的路由器、交换机、电脑(PC)等等。这些设备都在你的电脑里面“运行”,它们之间可以互相通信,就像一个封闭的小王国。 但是&#…...
【网络】每天掌握一个Linux命令 - iftop
在Linux系统中,iftop是网络管理的得力助手,能实时监控网络流量、连接情况等,帮助排查网络异常。接下来从多方面详细介绍它。 目录 【网络】每天掌握一个Linux命令 - iftop工具概述安装方式核心功能基础用法进阶操作实战案例面试题场景生产场景…...

装饰模式(Decorator Pattern)重构java邮件发奖系统实战
前言 现在我们有个如下的需求,设计一个邮件发奖的小系统, 需求 1.数据验证 → 2. 敏感信息加密 → 3. 日志记录 → 4. 实际发送邮件 装饰器模式(Decorator Pattern)允许向一个现有的对象添加新的功能,同时又不改变其…...

Linux 文件类型,目录与路径,文件与目录管理
文件类型 后面的字符表示文件类型标志 普通文件:-(纯文本文件,二进制文件,数据格式文件) 如文本文件、图片、程序文件等。 目录文件:d(directory) 用来存放其他文件或子目录。 设备…...

【Oracle APEX开发小技巧12】
有如下需求: 有一个问题反馈页面,要实现在apex页面展示能直观看到反馈时间超过7天未处理的数据,方便管理员及时处理反馈。 我的方法:直接将逻辑写在SQL中,这样可以直接在页面展示 完整代码: SELECTSF.FE…...

Mybatis逆向工程,动态创建实体类、条件扩展类、Mapper接口、Mapper.xml映射文件
今天呢,博主的学习进度也是步入了Java Mybatis 框架,目前正在逐步杨帆旗航。 那么接下来就给大家出一期有关 Mybatis 逆向工程的教学,希望能对大家有所帮助,也特别欢迎大家指点不足之处,小生很乐意接受正确的建议&…...

基于Flask实现的医疗保险欺诈识别监测模型
基于Flask实现的医疗保险欺诈识别监测模型 项目截图 项目简介 社会医疗保险是国家通过立法形式强制实施,由雇主和个人按一定比例缴纳保险费,建立社会医疗保险基金,支付雇员医疗费用的一种医疗保险制度, 它是促进社会文明和进步的…...
linux 错误码总结
1,错误码的概念与作用 在Linux系统中,错误码是系统调用或库函数在执行失败时返回的特定数值,用于指示具体的错误类型。这些错误码通过全局变量errno来存储和传递,errno由操作系统维护,保存最近一次发生的错误信息。值得注意的是,errno的值在每次系统调用或函数调用失败时…...
LLM基础1_语言模型如何处理文本
基于GitHub项目:https://github.com/datawhalechina/llms-from-scratch-cn 工具介绍 tiktoken:OpenAI开发的专业"分词器" torch:Facebook开发的强力计算引擎,相当于超级计算器 理解词嵌入:给词语画"…...