当前位置: 首页 > news >正文

Find My运动耳机|苹果Find My技术与耳机结合,智能防丢,全球定位

运动耳机是为运动时候佩带的耳机,而是一种区别于一般耳机的能稳定固定在佩戴部位的耳机,该种耳机不会因为身体运动而使耳机从耳朵里掉落,普遍带有防滴溅、轻便等特性,透气性能较好,属于开放式耳机。
在这里插入图片描述

在智能化加持下,防丢功能的加入使得人们日益关心物品的去向。最新的运动耳机与苹果Find My结合,智能防丢,全球定位。使得我们可以通过苹果Find My App查找物品位置,还可以将失主的联系方式留在耳机上,方便捡到的人联系失主。
在这里插入图片描述

苹果发布AirTag发布以来,大家都更加注重物品的防丢,苹果的 Find My 就可以查找 iPhone、Mac、AirPods、Apple Watch,如今的Find My已经不单单可以查找苹果的设备,随着第三方设备的加入,将丰富Find My Network的版图。产品与Find My可实现智能防丢的功能。

Find My支持的功能
在这里插入图片描述

有害跟踪检测功能:该功能会通知用户可能无法正常识别的配件,同时会追踪这类配件随时间而变化的位置信息。

丢失模式设置号码:支持通过该网络将特定设备或配件设置为丢失模式,还可以设置预留号码让人捡到时联系你。

发现丢失设备位置:当某用户丢失某个设备时可以将其标记为丢失模式,随后设备信息会在蓝牙网络里互相传播。最终当某个用户的蓝牙检测到这个丢失物品时会将其大致的位置传递回最开始丢失的用户帮助用户快速寻找设备。

控制设备播放声音:可以远程发起播放声音帮助用户寻找配件,该动作既支持配件所有者且也支持非所有者发起。当查找到配件的大致位置后用户可以让所有者的 iOS设备发出声音进行提醒,并有所有者取消提醒去寻找设备等。
在这里插入图片描述

未来Find My将独立成网,第三方设备的加入,将丰富Find My Network的版图。Find My Network将提供给第三方接口来提供更好的服务。不会破坏用户隐私,除了用户以外,苹果公司和第三方都不会知道手机的具体位置。苹果的Find My 技术使用苹果设备的蓝牙无线信号创建一个设备网络以寻找丢失的物品,他们将与第三方公司打造Find My Network防丢产品。

ST17H6x 苹果Find My芯片
在这里插入图片描述

支持Find My Network
内置 64 KB SRAM、96 KB ROM 存储空间,并支持多个外部 SPI、PWM、DMA、UART
支持SIG-Mesh,支持多个节点Friend、LowPower、Proxy、Relay
完善的安全机制:基于 AES-128算法的硬件加密、支持加密算法的硬件加速器
丰富的通信接口及 GPIO 管脚,可支持多种场景及复杂的应用

ST17H6x 芯片在苹果 Find My 应用
在这里插入图片描述

ST17H6x多场景应用平均功耗
在这里插入图片描述

伦茨科技有许多蓝牙产品方案中运用到Find My功能。Find My功能实际应用场景:儿童手表、车钥匙、宠物项圈、防丢背夹、智能拐杖、防丢书包、钱包、卡包。

相关文章:

Find My运动耳机|苹果Find My技术与耳机结合,智能防丢,全球定位

运动耳机是为运动时候佩带的耳机,而是一种区别于一般耳机的能稳定固定在佩戴部位的耳机,该种耳机不会因为身体运动而使耳机从耳朵里掉落,普遍带有防滴溅、轻便等特性,透气性能较好,属于开放式耳机。 在智能化加持下&…...

书生大模型实战营Linux+InternStudio 关卡任务

一、端口映射 使用以下命令进行端口映射 ssh -p {YOUR_PORT} rootssh.intern-ai.org.cn -CNg -L 7860:127.0.0.1:7860 -o StrictHostKeyCheckingno 命令解释: -p 37367:是指定 SSH 连接的端口为 37367。rootssh.intern-ai.org.cn:表示要以…...

研究实锤:别让大模型「想」太多,OpenAI o1准确率竟下降36.3%

思维链(CoT)已被证明可以在许多任务(如多步骤推理)上显著提升大模型的性能。然而,在哪些情况下,CoT 会系统性地降低大模型的性能,这仍然是一个有待进一步讨论的问题。 如今,来自普林…...

C++游戏开发

C游戏开发概述 C 是游戏开发中的主要编程语言之一,因其性能、控制和广泛的生态系统而受到开发者的青睐。随着游戏行业的迅速发展,C 被用来构建许多成功的游戏和游戏引擎。本文将深入探讨 C 在游戏开发中的应用,包括基础概念、技术栈、示例代…...

ChatGPT中的RAG;大模型微调;通过正确的提问和回答数据进行问答系统的微调;

目录 ChatGPT中的RAG 1.检索器: 2.生成器: 3.结合使用: 大模型微调 通过正确的提问和回答数据进行问答系统的微调 ChatGPT中的RAG 在ChatGPT中,RAG(Retrieval-Augmented Generation)是一种结合了检索与生成的技术,旨在提高模型的回答质量和准确性。 RAG模型通常由两个…...

6款IntelliJ IDEA插件,让Spring和Java开发如虎添翼

文章目录 1、SonarLint2、JRebel for IntelliJ3、SwaggerHub插件4、Lombok插件5、RestfulTool插件6、 Json2Pojo插件7、结论 对于任何Spring Boot开发者来说,两个首要的目标是最大限度地提高工作效率和确保高质量代码。IntelliJ IDEA 是目前最广泛使用的集成开发环境…...

源代码加密解决方案:文档加密与沙盒加密的比较分析

源代码加密是保护企业知识产权和市场竞争力的关键手段。在众多源代码加密技术中,文档加密类软件和沙盒加密类软件SDC是两种重要的解决方案。以下是对这两种技术的分析: 文档加密类软件: 这类软件主要采用APIHOOK应用层透明加密技术&#xff0…...

Spring Boot 与 Vue 共筑高校网上订餐卓越平台

作者介绍:✌️大厂全栈码农|毕设实战开发,专注于大学生项目实战开发、讲解和毕业答疑辅导。 🍅获取源码联系方式请查看文末🍅 推荐订阅精彩专栏 👇🏻 避免错过下次更新 Springboot项目精选实战案例 更多项目…...

【数据仓库】Hive 拉链表实践

背景 拉链表是一种数据模型,主要是针对数据仓库设计中表存储数据的方式而定义的;顾名思义,所谓拉链表,就是记录历史。记录一个事务从开始一直到当前状态的所有变化的信息。 拉链表可以避免按每一天存储所有记录造成的海量存储问题…...

【python_pandas_将列表按照某几列进行分组,再求和,按照原列表的字段顺序返回】

说明: 1、按照[“行描述”,”‘公司代码’, ‘科目代码’, ‘预算项目代码’] 进行分组。 2、对“贷方”列进行求和。 3、最后按照之前的表头顺序进行排序,返回结果列表。 #-*- coding:utf-8-*import pandas as pd def consolidate_salary_provisions(l…...

Vue的双向绑定

Vue的双向绑定特性介绍 在现代前端开发中,数据的管理和UI的更新是至关重要的。Vue.js作为一个渐进式JavaScript框架,提供了强大的双向数据绑定机制,极大地简化了这些操作。在本文中,我们将深入探讨Vue的双向绑定特性。 什么是双…...

谷歌浏览器安装 Vue.js devtools 插件

文章目录 1. 安装2. 使用3. 注意 1. 安装 ① 搜索极简插件:https://chrome.zzzmh.cn/index ② 搜索框输入 Vue,选择 Vue.js devtools ③ 从历史版本里面选择并下载,选择 6.4 版本的就行 ④ 打开浏览器,右上角三个点 → 扩展程序…...

LWIP通信协议UDP发送、接收源码解析

1.UDP发送函数比较简短,带操作系统和裸机一样。以下是udp_sendto源码解析; 2.LWIP源码UDP接收数据 2.1.UDP带操作系统接收数据,以下是源码解析; 2.2.UDP裸机接收数据,以下是源码解析...

Linux—进程学习-01

目录 Linux—进程学习—11.冯诺依曼体系结构2.操作系统2.1操作系统的概念2.2操作系统的目的2.3如何理解管理2.4计算机软硬件体系的理解2.5系统调用和库函数的概念 3.进程3.1进程是什么3.2管理进程3.2.1描述进程-PCB3.2.2组织进程3.2.3总结 3.3查看进程 4.与进程有关的系统调用 …...

FR动态数据源插件支持配置模板中某个数据集进行数据连接的切换

1 需求背景 该插件的需求来源于官方帮助文档: 动态数据源/数据库- FineReport帮助文档 - 全面的报表使用教程和学习资料 官方的方案的缺点是会暴露数据库IP,端口密码等,不安全。...

epoll 技术为什么用rbtree而不用hashmap呢?

目录 1.epoll 技术为什么用rbtree而不用hashmap呢?2 .红黑树支持顺序遍历,这对于epoll的事件管理机制可能非常有用, 怎么理解 epoll 理解,可以参考这个 https://zhuanlan.zhihu.com/p/64746509 1.epoll 技术为什么用rbtree而不用…...

关于Android Studio Koala Feature Drop | 2024.1.2下载不了插件的解决办法

解决 androidStudio Settings->Plugins下载插件,点击install后没反应,同时插件描述相关显示不出来 第一步: 第二步: 点击设置,勾选Auto-detect proxy settings,输入网址 https://plugins.jetbrains.com…...

公共命名空间,2024年11月的笔记

进行类比思维。对于在电脑上显示字符的任务,需要字符集。曾经有人研究算法,希望编出一个神奇的程序,能够显示所有字符。但最终的结果是,需要字符集,人工地把所有字符收集起来,让电脑一个个记住,…...

登录功能设计(php+mysql)

一 登录功能 1. 创建一个登录页面(login.php),包含一个表单,用户输入用户名和密码。 2. 在表单的提交事件中,使用PHP代码处理用户输入的用户名和密码。 3. 首先,连接MySQL数据库。然后&a…...

从0开始学习Linux——远程连接工具

往期目录: 从0开始学习Linux——简介&安装 从0开始学习Linux——搭建属于自己的Linux虚拟机 从0开始学习Linux——文本编辑器 从0开始学习Linux——Yum工具 Linux 远程连接工具是指用于从远程计算机连接到 Linux 系统并进行操作的各种工具。它们可以帮助管理员或…...

浏览器访问 AWS ECS 上部署的 Docker 容器(监听 80 端口)

✅ 一、ECS 服务配置 Dockerfile 确保监听 80 端口 EXPOSE 80 CMD ["nginx", "-g", "daemon off;"]或 EXPOSE 80 CMD ["python3", "-m", "http.server", "80"]任务定义(Task Definition&…...

基于大模型的 UI 自动化系统

基于大模型的 UI 自动化系统 下面是一个完整的 Python 系统,利用大模型实现智能 UI 自动化,结合计算机视觉和自然语言处理技术,实现"看屏操作"的能力。 系统架构设计 #mermaid-svg-2gn2GRvh5WCP2ktF {font-family:"trebuchet ms",verdana,arial,sans-…...

DockerHub与私有镜像仓库在容器化中的应用与管理

哈喽,大家好,我是左手python! Docker Hub的应用与管理 Docker Hub的基本概念与使用方法 Docker Hub是Docker官方提供的一个公共镜像仓库,用户可以在其中找到各种操作系统、软件和应用的镜像。开发者可以通过Docker Hub轻松获取所…...

基于当前项目通过npm包形式暴露公共组件

1.package.sjon文件配置 其中xh-flowable就是暴露出去的npm包名 2.创建tpyes文件夹,并新增内容 3.创建package文件夹...

【C++从零实现Json-Rpc框架】第六弹 —— 服务端模块划分

一、项目背景回顾 前五弹完成了Json-Rpc协议解析、请求处理、客户端调用等基础模块搭建。 本弹重点聚焦于服务端的模块划分与架构设计,提升代码结构的可维护性与扩展性。 二、服务端模块设计目标 高内聚低耦合:各模块职责清晰,便于独立开发…...

七、数据库的完整性

七、数据库的完整性 主要内容 7.1 数据库的完整性概述 7.2 实体完整性 7.3 参照完整性 7.4 用户定义的完整性 7.5 触发器 7.6 SQL Server中数据库完整性的实现 7.7 小结 7.1 数据库的完整性概述 数据库完整性的含义 正确性 指数据的合法性 有效性 指数据是否属于所定…...

搭建DNS域名解析服务器(正向解析资源文件)

正向解析资源文件 1)准备工作 服务端及客户端都关闭安全软件 [rootlocalhost ~]# systemctl stop firewalld [rootlocalhost ~]# setenforce 0 2)服务端安装软件:bind 1.配置yum源 [rootlocalhost ~]# cat /etc/yum.repos.d/base.repo [Base…...

【Linux系统】Linux环境变量:系统配置的隐形指挥官

。# Linux系列 文章目录 前言一、环境变量的概念二、常见的环境变量三、环境变量特点及其相关指令3.1 环境变量的全局性3.2、环境变量的生命周期 四、环境变量的组织方式五、C语言对环境变量的操作5.1 设置环境变量:setenv5.2 删除环境变量:unsetenv5.3 遍历所有环境…...

Scrapy-Redis分布式爬虫架构的可扩展性与容错性增强:基于微服务与容器化的解决方案

在大数据时代,海量数据的采集与处理成为企业和研究机构获取信息的关键环节。Scrapy-Redis作为一种经典的分布式爬虫架构,在处理大规模数据抓取任务时展现出强大的能力。然而,随着业务规模的不断扩大和数据抓取需求的日益复杂,传统…...

论文阅读笔记——Muffin: Testing Deep Learning Libraries via Neural Architecture Fuzzing

Muffin 论文 现有方法 CRADLE 和 LEMON,依赖模型推理阶段输出进行差分测试,但在训练阶段是不可行的,因为训练阶段直到最后才有固定输出,中间过程是不断变化的。API 库覆盖低,因为各个 API 都是在各种具体场景下使用。…...