多特征变量序列预测(10)基于麻雀优化算法的CEEMDAN-SSA-Transformer-BiLSTM预测模型

往期精彩内容:
时序预测:LSTM、ARIMA、Holt-Winters、SARIMA模型的分析与比较
全是干货 | 数据集、学习资料、建模资源分享!
EMD变体分解效果最好算法——CEEMDAN(五)-CSDN博客
拒绝信息泄露!VMD滚动分解 + Informer-BiLSTM并行预测模型-CSDN博客
风速预测(一)数据集介绍和预处理_风速数据在哪里下载-CSDN博客
风速预测(二)基于Pytorch的EMD-LSTM模型-CSDN博客
风速预测(三)EMD-LSTM-Attention模型-CSDN博客
风速预测(四)基于Pytorch的EMD-Transformer模型-CSDN博客
风速预测(五)基于Pytorch的EMD-CNN-LSTM模型-CSDN博客
风速预测(六)基于Pytorch的EMD-CNN-GRU并行模型-CSDN博客
单步预测-风速预测模型代码全家桶-CSDN博客
CEEMDAN +组合预测模型(BiLSTM-Attention + ARIMA)-CSDN博客
CEEMDAN +组合预测模型(Transformer - BiLSTM + ARIMA)-CSDN博客
CEEMDAN +组合预测模型(CNN-LSTM + ARIMA)-CSDN博客
CEEMDAN +组合预测模型(CNN-Transformer + ARIMA)-CSDN博客
多特征变量序列预测(一)——CNN-LSTM风速预测模型-CSDN博客
多特征变量序列预测(二)——CNN-LSTM-Attention风速预测模型-CSDN博客
多特征变量序列预测(三)——CNN-Transformer风速预测模型-CSDN博客
多特征变量序列预测(四) Transformer-BiLSTM风速预测模型-CSDN博客
多特征变量序列预测(五) CEEMDAN+CNN-LSTM风速预测模型-CSDN博客
多特征变量序列预测(六) CEEMDAN+CNN-Transformer风速预测模型-CSDN博客
基于麻雀优化算法SSA的CEEMDAN-BiLSTM-Attention的预测模型-CSDN博客
基于麻雀优化算法SSA的CEEMDAN-Transformer-BiGRU预测模型-CSDN博客
半天入门!锂电池剩余寿命预测(Python)-CSDN博客
超强预测模型:二次分解-组合预测-CSDN博客
多特征变量序列预测(七) CEEMDAN+Transformer-BiLSTM预测模型-CSDN博客
多特征变量序列预测(八)基于麻雀优化算法的CEEMDAN-SSA-BiLSTM预测模型-CSDN博客
VMD + CEEMDAN 二次分解,BiLSTM-Attention预测模型-CSDN博客
前言
本文基于前期介绍的风速数据(文末附数据集),介绍一种综合应用完备集合经验模态分解CEEMDAN与基于麻雀优化算法的SSA-Transformer-BiLSTM多特征变量序列预测模型,以提高时间序列数据的预测性能。

模型整体结构:数据集一共有天气、温度、湿度、气压、风速等九个变量,使用CEEMDAN算法对风速序列进行分解,然后合并所有的分量和原始数据集变量,形成一个加强的特征输入,通过滑动窗口制作数据集,利用多变量来预测风速。通过麻雀优化算法对SSA-Transformer-BiLSTM模型进行优化,提取加强后的特征,然后再送入全连接层,实现高精度的预测模型。
风速数据集的详细介绍可以参考下文:
风速预测(一)数据集介绍和预处理_垂直风速气象数据源-CSDN博客

1 多特征变量数据集制作与预处理
1.1 导入数据

1.2 CEEMDAN分解

1.3 数据集制作与预处理
先合并原始数据变量和分解的分量,按照9:1划分训练集和测试集


制作数据集

2 麻雀优化算法
2.1 麻雀优化算法介绍
麻雀优化算法(Sparrow Optimization Algorithm,简称SOA)是一种基于自然界麻雀行为特点的优化算法,它模拟了麻雀在觅食、迁徙和社交等行为中的优化策略。该算法在解决多种优化问题方面展现出了良好的性能。
麻雀优化算法的基本思想是通过模拟麻雀的觅食行为,不断优化搜索空间中的解。算法的过程可以分为觅食行为、迁徙行为和社交行为三个阶段。
1. 觅食行为(Foraging Behavior):麻雀在觅食时会选择距离较近且具有较高适应度的食物源。在算法中,解空间中的每个个体被看作是一个食物源,具有适应度评价值。麻雀通过选择适应度较高的个体来寻找更优的解。
2. 迁徙行为(Migration Behavior):当麻雀在一个食物源周围搜索一段时间后,如果没有找到更优的解,它们会选择离开当前食物源,前往其他食物源继续寻找。在算法中,个体之间的位置信息会发生变化,以模拟麻雀的迁徙行为。
3. 社交行为(Social Behavior):麻雀在觅食时会通过与其他麻雀的交流来获取更多的信息,从而提高自己的觅食效率。在算法中,个体之间通过交换信息来改善自身的解,并且更新解空间中的最优解。
2.2 基于Python的麻雀优化算法实现

2.3 麻雀优化算法-超参数寻优过程
麻雀优化算法具有简单易实现、全局寻优能力和自适应性等特点,适用于解决组合优化问题。我们通过麻雀优化算法来进行SSA-Transformer-BiLSTM模型的超参数寻优。

通过设置合适的种群规模和优化迭代次数,我们在给定的超参数范围内,搜索出最优的参数。
3 基于Pytorch的CEEMDAN + SSA-Transformer-BiLSTM 预测模型
3.1 定义CEEMDAN + SSA-Transformer-BiLSTM预测模型

注意:输入风速数据形状为 [64, 24, 23], batch_size=64,24代表序列长度(滑动窗口取值), 维度23维代表挑选的8个变量和15个分量的维度。
在使用Transformer模型中的多头注意力时,输入维度必须能够被num_heads(注意力头的数量)整除。因为在多头注意力机制中,输入的嵌入向量会被分成多个头,每个头的维度是embed_dim / num_heads,因此embed_dim必须能够被num_heads整除,以确保能够均匀地分配给每个注意力头。
因为此时输入维度为23,本文采用对数据进行对半切分堆叠,使输入形状为[64, 12, 46]。
3.2 设置参数,训练模型

50个epoch,MSE 为0.005186,多变量特征CEEMDAN + SSA-Transformer-BiLSTM预测效果良好,加入CEEMDAN分解后,多变量预测效果提升明显,性能优越,适当调整模型参数,还可以进一步提高模型预测表现。
注意调整参数:
-
可以修改麻雀优化算法的种群规模和优化迭代次数;
-
调整Transformer编码器层数、多头注意力头数和BiLSTM层数维度数的参数搜索范围,增加更多的 epoch (注意防止过拟合)
-
可以改变滑动窗口长度(设置合适的窗口长度)
4 模型评估与可视化
4.1 结果可视化

4.2 模型评估

5 代码、数据整理如下:

相关文章:
多特征变量序列预测(10)基于麻雀优化算法的CEEMDAN-SSA-Transformer-BiLSTM预测模型
往期精彩内容: 时序预测:LSTM、ARIMA、Holt-Winters、SARIMA模型的分析与比较 全是干货 | 数据集、学习资料、建模资源分享! EMD变体分解效果最好算法——CEEMDAN(五)-CSDN博客 拒绝信息泄露!VMD滚动分…...
算法学习(十)—— 字符串
关于字符串操作 这类题一般是和其它算法合起来,比如模拟,双指针,动态规划或者回溯等,所以字符串相关的题目类型一般是非常非常丰富的,这里我们选取几道经典的题目进行讲解 部分OJ题详解 14. 最长公共前缀 14. 最长…...
「Mac畅玩鸿蒙与硬件16」鸿蒙UI组件篇6 - List 和 Grid 组件展示数据列表
List 和 Grid 是鸿蒙开发中的核心组件,用于展示动态数据。List 适合展示垂直或水平排列的数据列表,而 Grid 则适用于展示商品或图片的网格布局。本篇将展示如何封装组件,并通过按钮实现布局切换,提升界面的灵活性和用户体验。 关键…...
masm汇编字符输入小写转大写演示
从键盘读取一个字符变成大写换行并输出 assume cs:codecode segmentstart:mov ah,1int 21hmov bl,alsub bl,20hmov dl,10mov ah,2int 21hmov dl,blmov ah,2int 21hmov ah,4chint 21hcode ends end start 效果演示:...
防火墙|WAF|漏洞|网络安全
防火墙|WAF|漏洞|网络安全 防火墙 根据内容分析数据包: 1、源IP和目的IP地址 2、有效负载中的内容。 3、数据包协议(例如,连接是否使用 TCP/IP 协议)。 4、应用协议(HTTP、Telnet、FTP、DNS、SSH 等)。 5…...
继承机制深度解析:从基础到进阶的完整指南
文章目录 1. 继承的概念及定义1.1 继承的概念:1.2继承的定义:1.2.1 定义格式1.2.2 继承基类成员访问方式的变化: 1.3继续类模板 2. 基类和派生类间的转换2.1 向上转换(Upcasting)2.2 向下转换(Downcasting&…...
8. 数据结构——邻接表、邻接矩阵的基本操作
一、邻接表 1. 内容 2. 实现代码(直接可以复制使用) //邻接表的相关操作 #include<bits/stdc.h> #define MVnum 100 #define OK 1 #define ERROR -1 using namespace std;typedef int Status; typedef char VerTexType; //假设顶点的数据类型为char typedef int ArcT…...
OpenCV Python 版使用教程(二)摄像头调用
文章目录 一、上篇回顾二、使用步骤1. 调用摄像头的 API 介绍2. 代码示例3. 代码分析 三、下篇预告 一、上篇回顾 在上一篇中,简单介绍了如何在 Windows 和 Ubuntu 两个环境下部署和安装 OpenCV,从本篇开始将逐步介绍 OpenCV 中的常见操作。 本篇介绍 …...
基础算法——排序算法(冒泡排序,选择排序,堆排序,插入排序,希尔排序,归并排序,快速排序,计数排序,桶排序,基数排序,Java排序)
1.概述 比较排序算法 算法最好最坏平均空间稳定思想注意事项冒泡O(n)O( n 2 n^2 n2)O( n 2 n^2 n2)O(1)Y比较最好情况需要额外判断选择O( n 2 n^2 n2)O( n 2 n^2 n2)O( n 2 n^2 n2)O(1)N比较交换次数一般少于冒泡堆O( n l o g n nlogn nlogn)O( n l o g n nlogn nlogn)O( n l…...
几种常见的处理ARP欺骗的方法:静态ARP表和VLAN等
ARP(Address Resolution Protocol)欺骗是一种常见的网络攻击手段,攻击者通过伪造ARP响应,将网关的MAC地址指向攻击者的MAC地址,从而截获或篡改网络流量。为了应对ARP欺骗攻击,现代网络设备和管理员采取了一…...
突破1200°C高温性能极限!北京科技大学用机器学习合成24种耐火高熵合金,室温延展性极佳
在工程应用中,如燃气轮机、核反应堆和航空推进系统,对具备优异高温机械性能的金属合金需求十分旺盛。由于材料熔点的固有限制,传统镍基 (Ni) 高温合金的耐温能力已接近极限。为满足开发高温结构材料的需求,耐火高熵合金 (RHEAs) 于…...
ORA-00054: 资源正忙, 但指定以 NOWAIT 方式获取资源 或者超时失效
数据治理过程中,有字段长度不够,扩展字段,报:ORA-00054: 资源正忙, 但指定以 NOWAIT 方式获取资源 或者超时失效 ALTER TABLE LAPD_RSJ_CXJMYLBXCBXX MODIFY HKXZ VARCHAR2(10);错误表示当前会话在试图访问的资源(通常…...
Python学习笔记-断点操作结合异常处理
在编程中,调试和错误处理是提升代码质量和开发效率的关键环节。调试能帮助识别并修复问题,异常处理则使得程序能在出现错误时有效地管理而不至于崩溃。断点与异常处理的结合应用是高级编程中不可或缺的技巧,能够帮助更高效地定位问题,提高程序的鲁棒性。 本文将通过详细的…...
Java实现JWT登录认证
文章目录 什么是JWT?为什么需要令牌?如何实现?添加依赖:JwtUtils.java(生成、解析Token的工具类)jwt配置:登录业务逻辑:其他关联代码:测试: 什么是JWT? JWT(Json Web Token&…...
「Mac畅玩鸿蒙与硬件20」鸿蒙UI组件篇10 - Canvas 组件自定义绘图
Canvas 组件在鸿蒙应用中用于绘制自定义图形,提供丰富的绘制功能和灵活的定制能力。通过 Canvas,可以创建矩形、圆形、路径、文本等基础图形,为鸿蒙应用增添个性化的视觉效果。本篇将介绍 Canvas 组件的基础操作,涵盖绘制矩形、圆…...
山东路远生态科技有限公司竣工投产仪式暨产品发布会圆满举行
第二十届三中全会于2024年7月15日至18日在北京举行。全会审议通过了《关于进一步全面深化改革、推进中国式现代化的决定》。其中提到,“要健全因地制宜发展新质生产力体制机制”。 新质生产力是由技术革命性突破、生产要素创新性配置、产业深度转型升级而催生的当代先进生产力…...
java: 题目:银行账户管理系统
题目:银行账户管理系统 设计一个简单的银行账户管理系统。要求实现以下功能: 1. 创建一个银行账户 BankAccount 类,该类具有以下属性:accountNumber(账户号码,类型为 String) balanceÿ…...
PH热榜 | 2024-11-06
DevNow 是一个精简的开源技术博客项目模版,支持 Vercel 一键部署,支持评论、搜索等功能,欢迎大家体验。 Github:https://github.com/LaughingZhu/DevNow 1. MindOne Builder 标语:这是一个“设计优先”的应用构建工具…...
五、Java并发 Java Google Guava 实现
Guava 是托管在 Github.com 上的流行的 Google 开源的 Java 线程池库。 Guava 包含了许多有用的并发类,同时还包含了几个方便的 ExecutorService 实现,但这些实现类都无法通过直接实例化或子类化来创建实例。取而代之的是提供了 MoreExecutors 助手类来…...
ssm公交车信息管理系统+vue
系统包含:源码论文 所用技术:SpringBootVueSSMMybatisMysql 免费提供给大家参考或者学习,获取源码看文章最下面 需要定制看文章最下面 目 录 摘要 I Abstract II 第1章 绪 论 1 1.1 研究背景 1 1.2 研究意义 1 1.3 国内外研究现状 …...
未来机器人的大脑:如何用神经网络模拟器实现更智能的决策?
编辑:陈萍萍的公主一点人工一点智能 未来机器人的大脑:如何用神经网络模拟器实现更智能的决策?RWM通过双自回归机制有效解决了复合误差、部分可观测性和随机动力学等关键挑战,在不依赖领域特定归纳偏见的条件下实现了卓越的预测准…...
eNSP-Cloud(实现本地电脑与eNSP内设备之间通信)
说明: 想象一下,你正在用eNSP搭建一个虚拟的网络世界,里面有虚拟的路由器、交换机、电脑(PC)等等。这些设备都在你的电脑里面“运行”,它们之间可以互相通信,就像一个封闭的小王国。 但是&#…...
日语AI面试高效通关秘籍:专业解读与青柚面试智能助攻
在如今就业市场竞争日益激烈的背景下,越来越多的求职者将目光投向了日本及中日双语岗位。但是,一场日语面试往往让许多人感到步履维艰。你是否也曾因为面试官抛出的“刁钻问题”而心生畏惧?面对生疏的日语交流环境,即便提前恶补了…...
超短脉冲激光自聚焦效应
前言与目录 强激光引起自聚焦效应机理 超短脉冲激光在脆性材料内部加工时引起的自聚焦效应,这是一种非线性光学现象,主要涉及光学克尔效应和材料的非线性光学特性。 自聚焦效应可以产生局部的强光场,对材料产生非线性响应,可能…...
Python:操作 Excel 折叠
💖亲爱的技术爱好者们,热烈欢迎来到 Kant2048 的博客!我是 Thomas Kant,很开心能在CSDN上与你们相遇~💖 本博客的精华专栏: 【自动化测试】 【测试经验】 【人工智能】 【Python】 Python 操作 Excel 系列 读取单元格数据按行写入设置行高和列宽自动调整行高和列宽水平…...
MySQL中【正则表达式】用法
MySQL 中正则表达式通过 REGEXP 或 RLIKE 操作符实现(两者等价),用于在 WHERE 子句中进行复杂的字符串模式匹配。以下是核心用法和示例: 一、基础语法 SELECT column_name FROM table_name WHERE column_name REGEXP pattern; …...
[Java恶补day16] 238.除自身以外数组的乘积
给你一个整数数组 nums,返回 数组 answer ,其中 answer[i] 等于 nums 中除 nums[i] 之外其余各元素的乘积 。 题目数据 保证 数组 nums之中任意元素的全部前缀元素和后缀的乘积都在 32 位 整数范围内。 请 不要使用除法,且在 O(n) 时间复杂度…...
RNN避坑指南:从数学推导到LSTM/GRU工业级部署实战流程
本文较长,建议点赞收藏,以免遗失。更多AI大模型应用开发学习视频及资料,尽在聚客AI学院。 本文全面剖析RNN核心原理,深入讲解梯度消失/爆炸问题,并通过LSTM/GRU结构实现解决方案,提供时间序列预测和文本生成…...
HDFS分布式存储 zookeeper
hadoop介绍 狭义上hadoop是指apache的一款开源软件 用java语言实现开源框架,允许使用简单的变成模型跨计算机对大型集群进行分布式处理(1.海量的数据存储 2.海量数据的计算)Hadoop核心组件 hdfs(分布式文件存储系统)&a…...
MFC 抛体运动模拟:常见问题解决与界面美化
在 MFC 中开发抛体运动模拟程序时,我们常遇到 轨迹残留、无效刷新、视觉单调、物理逻辑瑕疵 等问题。本文将针对这些痛点,详细解析原因并提供解决方案,同时兼顾界面美化,让模拟效果更专业、更高效。 问题一:历史轨迹与小球残影残留 现象 小球运动后,历史位置的 “残影”…...
