【机器学习】聚类算法分类与探讨
💗💗💗欢迎来到我的博客,你将找到有关如何使用技术解决问题的文章,也会找到某个技术的学习路线。无论你是何种职业,我都希望我的博客对你有所帮助。最后不要忘记订阅我的博客以获取最新文章,也欢迎在文章下方留下你的评论和反馈。我期待着与你分享知识、互相学习和建立一个积极的社区。谢谢你的光临,让我们一起踏上这个知识之旅!
文章目录
- 🍋聚类算法基础
- 🍋K均值聚类算法
- 🍋DBSCAN及其派生算法
- 🍋AGNES(自底向上聚类)算法
- 🍋聚类评估指标
- 🍋示例完整代码(CoNLL-2003数据集)
- 🍋总结
🍋聚类算法基础
- 定义及重要性:聚类是一种无监督的机器学习方法,旨在将数据集划分为若干簇,使得同一簇内的数据点相似度高,不同簇之间的数据点差异大。聚类在客户分群、图像分割、文本分类和生物信息学等领域有广泛应用。
- 聚类算法的种类:
- 划分式算法(如K均值):基于数据点之间的距离,直接将数据划分为若干簇。
- 密度式算法(如DBSCAN):根据数据密度分布,将密度较高的区域识别为簇。
- 层次式算法(如AGNES):通过层次结构进行聚类,可以生成树状的层次结构。
- 网格式算法:将空间划分为网格,以网格为单位进行聚类(如CLIQUE算法)。
🍋K均值聚类算法
-
概述:K均值是一种基于划分的方法。首先选择K个初始质心,然后通过迭代优化,将每个数据点分配到距离最近的质心,更新质心位置,直到收敛。其目标是最小化簇内的方差。
-
工作原理:
- 选择K个初始质心。
- 计算每个数据点与质心的距离,将数据点分配到最近的质心所在的簇中。
- 更新每个簇的质心,重新计算每个簇的平均值。
- 重复步骤2和3,直到质心位置不再变化或达到最大迭代次数。
-
优缺点:K均值在处理大规模数据时效率高,但其对初始质心的选择敏感,可能陷入局部最优;另外,K的值需要提前确定。
from sklearn.cluster import KMeans
import matplotlib.pyplot as plt
import numpy as np# 生成一些示例数据
X = np.random.rand(100, 2)# 初始化K均值模型
kmeans = KMeans(n_clusters=3, random_state=42)
kmeans.fit(X)# 获取聚类结果
labels = kmeans.labels_# 可视化结果
plt.scatter(X[:, 0], X[:, 1], c=labels)
plt.scatter(kmeans.cluster_centers_[:, 0], kmeans.cluster_centers_[:, 1], s=300, c='red', marker='X')
plt.title("K-Means Clustering")
plt.show()
扩展:可进一步介绍K均值++初始化方法(K-means++),通过优化初始质心选择来提高收敛性和结果质量。
🍋DBSCAN及其派生算法
-
概述:DBSCAN(Density-Based Spatial Clustering of Applications with Noise)是一种基于密度的聚类算法,通过定义邻域半径(eps)和最小样本数(min_samples)来识别簇。密度足够高的区域被识别为簇,而密度不足的点则被视为噪声。
-
工作原理:
- 对于每个点,如果在其邻域半径内的点数超过min_samples,则将其标记为核心点。
- 将核心点的邻域扩展为一个簇,将所有能够通过密度连接的点归入此簇。
- 重复此过程,直到所有点都被分配到某个簇或标记为噪声。
-
优缺点:DBSCAN能够识别任意形状的簇,适合含有噪声的数据集,但对参数eps和min_samples敏感。
from sklearn.cluster import DBSCAN
import matplotlib.pyplot as plt
import numpy as np# 生成一些示例数据
X = np.random.rand(100, 2)# 初始化DBSCAN模型
dbscan = DBSCAN(eps=0.1, min_samples=5)
dbscan.fit(X)# 获取聚类结果
labels = dbscan.labels_# 可视化结果
plt.scatter(X[:, 0], X[:, 1], c=labels)
plt.title("DBSCAN Clustering")
plt.show()
派生算法:可介绍HDBSCAN(基于密度的层次聚类算法),它能在不同密度下自动调节,适用于密度变化较大的数据集。
🍋AGNES(自底向上聚类)算法
-
概述:AGNES(Agglomerative Nesting)是一种层次聚类算法,通过自底向上合并每个样本或簇,构建树状的层次结构。它不需要提前设定簇的数量。
-
工作原理:
- 将每个数据点视为一个独立的簇。
- 计算每对簇之间的距离,合并最近的两个簇。
- 重复步骤2,直到只剩下一个簇,或者达到预设的簇数。
-
连接方法:可以采用不同的连接方法,包括单连接(Single Linkage)、全连接(Complete Linkage)、平均连接(Average Linkage)和Ward连接。
from scipy.cluster.hierarchy import dendrogram, linkage
import matplotlib.pyplot as plt
import numpy as np# 生成一些示例数据
X = np.random.rand(10, 2)# 使用AGNES(层次聚类)
Z = linkage(X, method='ward')# 可视化层次聚类的树状图
plt.figure(figsize=(10, 5))
dendrogram(Z)
plt.title("AGNES Hierarchical Clustering Dendrogram")
plt.show()
扩展:还可以介绍如何确定层次聚类的最佳分割点,比如通过树状图的“拐点”或使用轮廓系数评估分割效果。
🍋聚类评估指标
常用指标:
- 轮廓系数(Silhouette Score):衡量簇内一致性和簇间分离度的指标,范围为-1到1,值越大越好。
- DBI指数(Davies-Bouldin Index):计算每个簇的离散性和簇间的相似性,值越小聚类效果越好。
- SSE(Sum of Squared Errors):用于K均值聚类,衡量簇内方差的总和。
from sklearn.metrics import silhouette_score# 计算轮廓系数
score = silhouette_score(X, labels)
print(f'Silhouette Score: {score}')
🍋示例完整代码(CoNLL-2003数据集)
import pandas as pd
import numpy as np
from sklearn.cluster import KMeans, DBSCAN, AgglomerativeClustering
from sklearn.feature_extraction.text import TfidfVectorizer
from sklearn.metrics import silhouette_score
from nltk.corpus import conll2003
from nltk import download# 下载 CoNLL-2003 数据集
download('conll2003')# 提取 CoNLL-2003 数据集
def load_conll_data():sentences = []for sentence in conll2003.iob_sents():words = [word for word, _, _ in sentence]sentences.append(" ".join(words))return sentences# 特征提取
def extract_features(texts):vectorizer = TfidfVectorizer(stop_words='english')return vectorizer.fit_transform(texts)# 聚类评估
def evaluate_clustering(model, X):labels = model.labels_ if hasattr(model, 'labels_') else model.predict(X)return silhouette_score(X, labels)# 加载数据
texts = load_conll_data()# 提取特征
X = extract_features(texts)# 初始化不同的聚类算法
kmeans = KMeans(n_clusters=5, random_state=42)
dbscan = DBSCAN(eps=0.5, min_samples=5)
agg_clustering = AgglomerativeClustering(n_clusters=5)# 聚类模型训练
kmeans.fit(X)
dbscan.fit(X)
agg_clustering.fit(X)# 聚类评估
kmeans_score = evaluate_clustering(kmeans, X)
dbscan_score = evaluate_clustering(dbscan, X)
agg_score = evaluate_clustering(agg_clustering, X)# 输出评估结果
print(f"K-means Silhouette Score: {kmeans_score:.4f}")
print(f"DBSCAN Silhouette Score: {dbscan_score:.4f}")
print(f"Agglomerative Clustering Silhouette Score: {agg_score:.4f}")
- CoNLL-2003 数据集:我们通过 nltk.corpus.conll2003 来加载 CoNLL-2003 数据集。每个句子的词语通过 iob_sents() 提取并合并成文本形式。
- 特征提取:我们使用 TfidfVectorizer 将文本转换为 TF-IDF 特征表示,移除英文停用词。
- 聚类算法:我们使用三种不同的聚类算法:
- K-means:我们指定 n_clusters=5(你可以根据需要调整)。
- DBSCAN:这里我们指定了 eps=0.5 和 min_samples=5,这两个参数可以调节以优化聚类效果。
- 层次聚类:使用 AgglomerativeClustering 进行层次聚类,并设置 n_clusters=5。
- 评估:使用 轮廓系数(Silhouette Score)来评估聚类效果。轮廓系数越接近 1 表示聚类效果越好,接近 -1 表示聚类效果差。
🍋总结
如何选择合适的聚类算法:
- 对于大规模、结构简单的数据集,K均值可能更合适。
- 含有噪声或非凸形状的数据集,DBSCAN表现较好。
- 层次结构明显或需要层次划分的数据,可以选择AGNES。
实际应用场景:
- 客户分群:使用K均值或层次聚类对客户数据进行分类,提供个性化服务。
- 图像分割:利用DBSCAN识别图像中的物体轮廓。
- 文本聚类:通过层次聚类对新闻或文档进行分组,形成主题集群。
挑战与创造都是很痛苦的,但是很充实。
相关文章:

【机器学习】聚类算法分类与探讨
💗💗💗欢迎来到我的博客,你将找到有关如何使用技术解决问题的文章,也会找到某个技术的学习路线。无论你是何种职业,我都希望我的博客对你有所帮助。最后不要忘记订阅我的博客以获取最新文章,也欢…...
MySQL中distinct与group by之间的性能进行比较
在 MySQL 中,DISTINCT 和 GROUP BY 都是用于去重或汇总数据的常用 SQL 语法。尽管它们在某些情况下能产生相同的结果,但它们的内部工作方式和性能表现可能有所不同。理解这两者的差异,对于选择正确的语法非常重要,尤其是在处理大量…...

计算机视觉读书系列(1)——基本知识与深度学习基础
研三即将毕业,后续的工作可能会偏AI方向的计算机视觉方面,因此准备了两条线来巩固计算机视觉基础。 一个是本系列,阅读经典《Deep Learning for Vision System》,做一些总结跑一些例子,也对应本系列文章 二是OpenCV实…...

怎么查看navicat的数据库密码
步骤1:打开navicat连接数据库工具,顶部的文件栏-导出结果-勾选导出密码-导出 步骤2:导出结果使用NotePad或文本打开,找到,数据库对应的的Password"995E66F64A15F6776“”的值复制下来 <Connection ConnectionName"…...

webrtc前端播放器完整案例
https://download.csdn.net/download/jinhuding/89961792...
GORM优化器和索引提示
在使用 GORM 进行数据库操作时,优化器和索引提示可以帮助你提高查询性能。GORM 提供了一些方法来利用这些特性。 优化器提示 优化器提示(Optimizer Hints)是数据库系统提供的功能,用于指导查询优化器如何处理查询。不同的数据库…...

linux驱动-i2c子系统框架学习(1)
可以将整个 I2C 子系统用下面的框图来描述: 可以将上面这一 I2C 子系统划分为三个层次,分别为用户空间、内核空间和硬件层,内核空间就包括 I2C 设备驱动层、I2C 核心层和 I2C 适配器驱动层, 本篇主要内容就是介绍 I2C 子系统框架中…...
元戎启行嵌入式面试题及参考答案
介绍下 CAN 通信原理 控制器局域网(CAN)是一种串行通信协议,主要用于汽车、工业自动化等领域的电子控制单元(ECU)之间的通信。 其通信原理是基于多主站架构。在总线上,多个节点(设备)都可以主动发起通信。CAN 协议使用差分信号来传输数据,通过两条信号线 CAN_H 和 CAN…...

【EasyExcel】EasyExcel导出表格包含合计行、自定义样式、自适应列宽
目录 0 EasyExcel简介1 Excel导出工具类设置自定义表头样式设置自适应列宽添加合计行 2 调用导出工具类导出Excel表3 测试结果 0 EasyExcel简介 在数据处理和报表生成的过程中,Excel是一个非常常用的工具。特别是在Java开发中,EasyExcel库因其简单高效而…...

es数据同步(仅供自己参考)
数据同步的问题分析: 当MySQL进行增删改查的时候,数据库的数据有所改变,这个时候需要修改es中的索引库的值,这个时候就涉及到了数据同步的问题 解决方法: 1、同步方法: 当服务对MySQL进行增删改的时候&…...

apt镜像源制作-ubuntu22.04
# 安装必要的软件 sudo apt-get install -y apt-mirror # 编辑/etc/apt/mirror.list,添加以下内容 set base_path /var/spool/apt-mirror # 指定要镜像的Ubuntu发布和组件-null dir jammy-updates main restricted universe multiverse # 镜像的Ubuntu发布和组件的URL-n…...
libaom 源码分析: 预测编码过程梳理
AV1 预测编码中核心技术 AV1(AOMedia Video 1)作为一种开源的视频编码格式,其预测编码核心技术主要包括以下几个方面: 分区树分割模块: AV1利用多类型分割模式,递归地对图像/视频序列进行分区,以捕捉更丰富的空间信息,从而提升编码效率。这包括新的方向预测分割模式及…...

从0开始学习Linux——Yum工具
往期目录: 从0开始学习Linux——简介&安装 从0开始学习Linux——搭建属于自己的Linux虚拟机 从0开始学习Linux——文本编辑器 上一个章节我们简单了解了Linux中常用的一些文本编辑器,本次教程我们将学习yum工具。 一、Yum简介 Yum(全名…...

【Linux】Linux管道揭秘:匿名管道如何连接进程世界
🌈个人主页:Yui_ 🌈Linux专栏:Linux 🌈C语言笔记专栏:C语言笔记 🌈数据结构专栏:数据结构 🌈C专栏:C 文章目录 1.什么是管道 ?2. 管道的类型2.1 匿…...
【LeetCode】【算法】155. 最小栈
LeetCode 155. 最小栈 题目描述 设计一个支持 push ,pop ,top 操作,并能在常数时间内检索到最小元素的栈。 实现 MinStack 类: MinStack() 初始化堆栈对象。 void push(int val) 将元素val推入堆栈。 void pop() 删除堆栈顶部的元素。 int …...
3.3 windows,ReactOS系统中页面的换出----1
系列文章目录 文章目录 系列文章目录3.3 页面的换出MiBalancerThread()MmTrimUserMemory()MmPageOutVirtualMemory() 3.3 页面的换出 在前一节中我们看到,如果有映射的页面已经被倒换到磁盘上即倒换文件中,…...
QCustomPlot添加自定义的图例,实现隐藏、删除功能(二)
文章目录 实现步骤:详细代码示例:实现原理和解释:使用方法:其他参考要实现一个支持复选框来控制曲线显示和隐藏的自定义 QCPLegend 类,可以通过继承 QCPLegend 并重写绘制和事件处理方法来实现,同时发出信号通知曲线的状态变更。 实现步骤: 继承 QCPLegend 类,添加绘…...

Linux云计算 |【第五阶段】CLOUD-DAY8
主要内容: 掌握DaemonSet控制器、污点策略(NoSchedule、Noexecute)、Job / CronJob资源对象、掌握Service服务、服务名解析CluterIP(服务名自动发现)、(Nodeport、Headless)、Ingress控制器 一…...

岛屿数量 广搜版BFS C#
和之前的卡码网深搜版是一道题 力扣第200题 99. 岛屿数量 题目描述 给定一个由 1(陆地)和 0(水)组成的矩阵,你需要计算岛屿的数量。岛屿由水平方向或垂直方向上相邻的陆地连接而成,并且四周都是水域。…...
hive切换表底层文件类型以及分隔符
1、改底层文件存储类型,但是一般只会在数据文件与期望类型一致的时候使用,比如load等方式时发现建表时没指定对这样的,因为这个语句不会更改具体的底层文件内容,只改元数据 ALTER TABLE 表名 SET FILEFORMAT 希望类型;2、更改数据…...

为什么需要建设工程项目管理?工程项目管理有哪些亮点功能?
在建筑行业,项目管理的重要性不言而喻。随着工程规模的扩大、技术复杂度的提升,传统的管理模式已经难以满足现代工程的需求。过去,许多企业依赖手工记录、口头沟通和分散的信息管理,导致效率低下、成本失控、风险频发。例如&#…...

《用户共鸣指数(E)驱动品牌大模型种草:如何抢占大模型搜索结果情感高地》
在注意力分散、内容高度同质化的时代,情感连接已成为品牌破圈的关键通道。我们在服务大量品牌客户的过程中发现,消费者对内容的“有感”程度,正日益成为影响品牌传播效率与转化率的核心变量。在生成式AI驱动的内容生成与推荐环境中࿰…...
linux 错误码总结
1,错误码的概念与作用 在Linux系统中,错误码是系统调用或库函数在执行失败时返回的特定数值,用于指示具体的错误类型。这些错误码通过全局变量errno来存储和传递,errno由操作系统维护,保存最近一次发生的错误信息。值得注意的是,errno的值在每次系统调用或函数调用失败时…...

【Java_EE】Spring MVC
目录 Spring Web MVC 编辑注解 RestController RequestMapping RequestParam RequestParam RequestBody PathVariable RequestPart 参数传递 注意事项 编辑参数重命名 RequestParam 编辑编辑传递集合 RequestParam 传递JSON数据 编辑RequestBody …...

Linux 内存管理实战精讲:核心原理与面试常考点全解析
Linux 内存管理实战精讲:核心原理与面试常考点全解析 Linux 内核内存管理是系统设计中最复杂但也最核心的模块之一。它不仅支撑着虚拟内存机制、物理内存分配、进程隔离与资源复用,还直接决定系统运行的性能与稳定性。无论你是嵌入式开发者、内核调试工…...

(一)单例模式
一、前言 单例模式属于六大创建型模式,即在软件设计过程中,主要关注创建对象的结果,并不关心创建对象的过程及细节。创建型设计模式将类对象的实例化过程进行抽象化接口设计,从而隐藏了类对象的实例是如何被创建的,封装了软件系统使用的具体对象类型。 六大创建型模式包括…...
人工智能 - 在Dify、Coze、n8n、FastGPT和RAGFlow之间做出技术选型
在Dify、Coze、n8n、FastGPT和RAGFlow之间做出技术选型。这些平台各有侧重,适用场景差异显著。下面我将从核心功能定位、典型应用场景、真实体验痛点、选型决策关键点进行拆解,并提供具体场景下的推荐方案。 一、核心功能定位速览 平台核心定位技术栈亮…...

Tauri2学习笔记
教程地址:https://www.bilibili.com/video/BV1Ca411N7mF?spm_id_from333.788.player.switch&vd_source707ec8983cc32e6e065d5496a7f79ee6 官方指引:https://tauri.app/zh-cn/start/ 目前Tauri2的教程视频不多,我按照Tauri1的教程来学习&…...

Appium下载安装配置保姆教程(图文详解)
目录 一、Appium软件介绍 1.特点 2.工作原理 3.应用场景 二、环境准备 安装 Node.js 安装 Appium 安装 JDK 安装 Android SDK 安装Python及依赖包 三、安装教程 1.Node.js安装 1.1.下载Node 1.2.安装程序 1.3.配置npm仓储和缓存 1.4. 配置环境 1.5.测试Node.j…...
比特币:固若金汤的数字堡垒与它的四道防线
第一道防线:机密信函——无法破解的哈希加密 将每一笔比特币交易比作一封在堡垒内部传递的机密信函。 解释“哈希”(Hashing)就是一种军事级的加密术(SHA-256),能将信函内容(交易细节…...