当前位置: 首页 > news >正文

Gradient Boosting Regressor(GBDT)--- 论文实战

一、前言

       在《机器学习论文复现实战---linear regression》中通过Pearson 相关性分析,去除了2个高相关性特征 "PN" 和 "AN" ,数据维度变为890*25。(数据集地址)

 这里我们不做任何前期处理,直接就将数据放入 GBDT 模型中进行训练了。

 二、模型训练过程

2.1  导入Python库

'''====================导入Python库===================='''
import pandas as pd               #python科学计算库
import numpy as np                #Python的一个开源数据分析处理库。
import matplotlib.pyplot as plt   #常用Python画图工具
from sklearn.ensemble import GradientBoostingRegressor  # 导入 GradientBoostingRegressor 模型
from sklearn.model_selection import train_test_split # 数据划分模块
from sklearn.preprocessing import StandardScaler   # 标准化模块
from sklearn.metrics import mean_squared_error, r2_score   #误差函数MSE,误差函数R^2,
from sklearn.model_selection import GridSearchCV     #超参数网格搜索

2.2  导入数据 

'''========================导入数据========================'''
data = pd.read_excel('D:/复现/trainset_loop6.xlsx')  #读取xlsx格式数据
# date = pd.read_csv('D:/复现/trainset_loop6.csv')   #读取csv格式数据
print(data.isnull().sum())   #检查数据中是否存在缺失值
print(data.shape)   #检查维度
print(data.columns) #数据的标签
data = data.drop(["PN","AN"], axis = 1) #axis = 1表示对列进行处理,0表示对行
Y, X = data['Eads'] , data.drop(['Eads'] , axis = 1) #对Y、X分别赋值

 2.3  标准化

'''=========================标准化========================'''
#利用StandardScaler函数对X进行标准化处理
scaler = StandardScaler()
X = scaler.fit_transform(X)
'''====================划分训练集与测试集==================='''
X_train,X_test,y_train,y_test = train_test_split(X , Y , test_size=0.2 , random_state=42)

2.4  模型训练

'''=======================模型训练========================'''
#模型训练
model = GradientBoosti

相关文章:

Gradient Boosting Regressor(GBDT)--- 论文实战

一、前言 在《机器学习论文复现实战---linear regression》中通过Pearson 相关性分析,去除了2个高相关性特征 "PN" 和 "AN" ,数据维度变为890*25。(数据集地址) 这里我们不做任何前期处理,直接就将数据放入 GBDT 模型中进行训练了。 二、模型训练过程…...

Python教程:python枚举类定义和使用

在Python中,枚举类(Enum)用于表示一组常量,使代码更加清晰和易于维护。枚举类通过enum模块定义。以下是如何定义和使用枚举类的详细步骤。 定义枚举类 首先,你需要导入enum模块,然后定义一个枚举类。枚举…...

Java学习Day60:微服务总结!(有经处无火,无火处无经)

1、技术版本 jdk&#xff1a;17及以上 -如果JDK8 springboot&#xff1a;3.1及其以上 -版本2.x springFramWork&#xff1a;6.0及其以上 -版本5.x springCloud&#xff1a;2022.0.5 -版本格林威治或者休斯顿 2、模拟springcloud 父模块指定父pom <parent><…...

MySQL日期类型选择建议

我们平时开发中不可避免的就是要存储时间&#xff0c;比如我们要记录操作表中这条记录的时间、记录转账的交易时间、记录出发时间、用户下单时间等等。你会发现时间这个东西与我们开发的联系还是非常紧密的&#xff0c;用的好与不好会给我们的业务甚至功能带来很大的影响。所以…...

70B的模型做微调,使用A10*8的卡能够使用

使用 8 张 A10 GPU&#xff08;每张 A10 GPU 大约有 24 GB 的显存&#xff09;来微调 70B 参数的模型会比较困难&#xff0c;主要原因是显存不足。像 70B 参数量级的模型&#xff08;如 LLaMA-2 70B、BLOOM-176B&#xff09;通常需要几百 GB 以上的显存&#xff0c;仅加载模型就…...

将vscode的终端改为cygwin terminal

现在终端是默认的power shell&#xff0c;没有显示cygwin 接下来选择默认配置文件 找到cygwin的选项即可 然后提示可能不安全什么的&#xff0c;点是&#xff0c;就有了...

《ASP.Net Core技术内幕与项目实战》读书笔记_1

ch1 .NET Core入门 .NET介绍 这一章主要说的是.Net Core、.Net Framework、.Net Stanard三个之间的关系。通俗来讲就是Core是新出的、能跨平台&#xff0c;Framwork是老版的、不能跨平台&#xff0c;Standard是为了在Framework、Core、Xamarin中统一库的使用而定制的规范&#…...

【青牛科技】应用方案|D2587A高压大电流DC-DC

1、概述 D2587A稳压器是专为反激式、升压和正向转换器应用而设计的单片集成电路。该器件提供四种不同的输出电压版本&#xff1a;3.3V、5V、12V 和可调节电压。这些稳压器需要的外部元器件很少&#xff0c;因此具有成本效益&#xff0c;并且易于使用。该电源开关是一款5A NPN器…...

【测试】【Debug】pytest运行后print没有输出

import pytest def test_good():for i in range(1000):print(i)def test_bad():print(this should fail!)assert False比如上述程序&#xff0c;运行之后只能看到输出了’this should fail!&#xff1b;但是debug版的测试运行后又能看到test_good函数中的输出。 这是为什么呢&a…...

linux strace 查看程序异常问题总结

1&#xff0c;死锁问题 #include <stdio.h> #include <pthread.h> #include <unistd.h>pthread_mutex_t lock1 PTHREAD_MUTEX_INITIALIZER; pthread_mutex_t lock2 PTHREAD_MUTEX_INITIALIZER;void* thread_func1(void* arg) {pthread_mutex_lock(&lo…...

8086汇编常见寄存器与指令

本文为学习书籍《汇编语言(第4版)》后的小结。 1、寄存器 序号寄存器描述1ax运算寄存器2bx地址寄存器&#xff0c;偏移地址3cx计数寄存器&#xff0c;loop的结束条件&#xff0c;jcxz的跳转条件4dx运算寄存器5cs段地址&#xff0c;指令执行段地址6ss段地址&#xff0c;栈的段地…...

Group By、Having用法总结(常见踩雷点总结—SQL)

Group By、Having用法总结 目录 Group By、Having用法总结一、 GROUP BY 用法二、 HAVING 用法三、 GROUP BY 和 HAVING 的常见踩雷点3.1 GROUP BY 选择的列必须出现在 SELECT 中&#xff08;&#x1f923;最重要的一点&#xff09;3.2 HAVING 与 WHERE 的区别3.3 GROUP BY 可以…...

Redis持久化机制——针对实习面试

目录 Redis持久化机制Redis为什么要有持久化机制&#xff1f;Redis持久化方式有哪些&#xff1f;AOF持久化工作原理是什么&#xff1f;有什么优缺点&#xff1f;AOF持久化工作原理AOF的优点AOF的缺点 RDB持久化工作原理是什么&#xff1f;有什么优缺点&#xff1f;RDB持久化工作…...

Windows系统服务器怎么设置远程连接?详细步骤

一、什么是Windows远程桌面连接? Windows远程桌面(Remote Desktop)功能使用户能够通过网络连接到另一台Windows计算机&#xff0c;实现远程操作。远程桌面非常适合系统管理员、技术支持人员以及那些需要远程工作的人&#xff0c;它允许用户以图形界面的方式访问远程计算机&…...

【Rust设计模式之建造者模式】

Rust设计模式之建造者模式 什么是建造者模式 什么是建造者模式 即将结构体属性方法与构建解离&#xff0c;使用专门的builder进行建造&#xff0c;说白了就是new和其他的方法分开&#xff0c;集中处理更方便。 直接上代码&#xff1a; #[derive(Debug)] struct children {nam…...

2024中国移动(南京)智算大会暨人工智能产业大会即将盛大启幕

11月9日&#xff0c;2024中国移动&#xff08;南京&#xff09;智算大会暨人工智能产业大会将在南京国际博览中心盛大举行。此次盛会将汇聚政界、学界与商界的顶尖力量&#xff0c;共同探讨智能计算与人工智能的未来发展方向&#xff0c;为智能计算与人工智能产业的发展注入新的…...

计算机毕业设计 | SpringBoot咖啡商城 购物采买平台 后台管理软件(附源码)

1&#xff0c;项目背景 1.1 当前的问题和困惑 系统稳定性&#xff1a; 在高并发访问时&#xff0c;商城系统容易出现卡顿、崩溃等问题&#xff0c;影响了用户体验和销售额。支付安全性&#xff1a; 支付环节存在潜在的安全隐患&#xff0c;如何确保支付过程的安全性和用户资金…...

CosyVoice文本转语音:轻松创造个性化音频

CosyVoice文本转语音&#xff1a;轻松创造个性化音频" 要实现一个使用通义语音合成模型CosyVoice将文字转换为音频的图形界面应用&#xff0c;可以使用Python的tkinter库来创建图形用户界面&#xff08;GUI&#xff09;&#xff0c;并使用requests库来调用CosyVoice的API…...

法语nous sommes

法语短语 “nous sommes” 的词源可以追溯到拉丁语&#xff0c;具体分析如下&#xff1a; 1. “Nous” 的词源&#xff1a; “Nous” 是法语中表示 “我们” 的人称代词&#xff0c;源自拉丁语的 “nos”&#xff0c;它表示 “我们” 的意思。 拉丁语 “nos” 是第一人称复数…...

《化学进展》

《化学进展》主要栏目有&#xff1a;综述&#xff0c;评论&#xff0c;中国化学印记&#xff0c;Mini Accounts等。本刊可供化学及相关学科领域的科研、教学、决策管理人员及研究生阅读。 《化学进展》投稿指南稿件要求   &#xff08;1&#xff09;本刊仅接受综述与评论性的…...

国防科技大学计算机基础课程笔记02信息编码

1.机内码和国标码 国标码就是我们非常熟悉的这个GB2312,但是因为都是16进制&#xff0c;因此这个了16进制的数据既可以翻译成为这个机器码&#xff0c;也可以翻译成为这个国标码&#xff0c;所以这个时候很容易会出现这个歧义的情况&#xff1b; 因此&#xff0c;我们的这个国…...

Docker 离线安装指南

参考文章 1、确认操作系统类型及内核版本 Docker依赖于Linux内核的一些特性&#xff0c;不同版本的Docker对内核版本有不同要求。例如&#xff0c;Docker 17.06及之后的版本通常需要Linux内核3.10及以上版本&#xff0c;Docker17.09及更高版本对应Linux内核4.9.x及更高版本。…...

k8s从入门到放弃之Ingress七层负载

k8s从入门到放弃之Ingress七层负载 在Kubernetes&#xff08;简称K8s&#xff09;中&#xff0c;Ingress是一个API对象&#xff0c;它允许你定义如何从集群外部访问集群内部的服务。Ingress可以提供负载均衡、SSL终结和基于名称的虚拟主机等功能。通过Ingress&#xff0c;你可…...

相机Camera日志实例分析之二:相机Camx【专业模式开启直方图拍照】单帧流程日志详解

【关注我&#xff0c;后续持续新增专题博文&#xff0c;谢谢&#xff01;&#xff01;&#xff01;】 上一篇我们讲了&#xff1a; 这一篇我们开始讲&#xff1a; 目录 一、场景操作步骤 二、日志基础关键字分级如下 三、场景日志如下&#xff1a; 一、场景操作步骤 操作步…...

服务器硬防的应用场景都有哪些?

服务器硬防是指一种通过硬件设备层面的安全措施来防御服务器系统受到网络攻击的方式&#xff0c;避免服务器受到各种恶意攻击和网络威胁&#xff0c;那么&#xff0c;服务器硬防通常都会应用在哪些场景当中呢&#xff1f; 硬防服务器中一般会配备入侵检测系统和预防系统&#x…...

MODBUS TCP转CANopen 技术赋能高效协同作业

在现代工业自动化领域&#xff0c;MODBUS TCP和CANopen两种通讯协议因其稳定性和高效性被广泛应用于各种设备和系统中。而随着科技的不断进步&#xff0c;这两种通讯协议也正在被逐步融合&#xff0c;形成了一种新型的通讯方式——开疆智能MODBUS TCP转CANopen网关KJ-TCPC-CANP…...

土地利用/土地覆盖遥感解译与基于CLUE模型未来变化情景预测;从基础到高级,涵盖ArcGIS数据处理、ENVI遥感解译与CLUE模型情景模拟等

&#x1f50d; 土地利用/土地覆盖数据是生态、环境和气象等诸多领域模型的关键输入参数。通过遥感影像解译技术&#xff0c;可以精准获取历史或当前任何一个区域的土地利用/土地覆盖情况。这些数据不仅能够用于评估区域生态环境的变化趋势&#xff0c;还能有效评价重大生态工程…...

【论文阅读28】-CNN-BiLSTM-Attention-(2024)

本文把滑坡位移序列拆开、筛优质因子&#xff0c;再用 CNN-BiLSTM-Attention 来动态预测每个子序列&#xff0c;最后重构出总位移&#xff0c;预测效果超越传统模型。 文章目录 1 引言2 方法2.1 位移时间序列加性模型2.2 变分模态分解 (VMD) 具体步骤2.3.1 样本熵&#xff08;S…...

select、poll、epoll 与 Reactor 模式

在高并发网络编程领域&#xff0c;高效处理大量连接和 I/O 事件是系统性能的关键。select、poll、epoll 作为 I/O 多路复用技术的代表&#xff0c;以及基于它们实现的 Reactor 模式&#xff0c;为开发者提供了强大的工具。本文将深入探讨这些技术的底层原理、优缺点。​ 一、I…...

【HarmonyOS 5 开发速记】如何获取用户信息(头像/昵称/手机号)

1.获取 authorizationCode&#xff1a; 2.利用 authorizationCode 获取 accessToken&#xff1a;文档中心 3.获取手机&#xff1a;文档中心 4.获取昵称头像&#xff1a;文档中心 首先创建 request 若要获取手机号&#xff0c;scope必填 phone&#xff0c;permissions 必填 …...