Gradient Boosting Regressor(GBDT)--- 论文实战
一、前言
在《机器学习论文复现实战---linear regression》中通过Pearson 相关性分析,去除了2个高相关性特征 "PN" 和 "AN" ,数据维度变为890*25。(数据集地址)
这里我们不做任何前期处理,直接就将数据放入 GBDT 模型中进行训练了。
二、模型训练过程
2.1 导入Python库
'''====================导入Python库===================='''
import pandas as pd #python科学计算库
import numpy as np #Python的一个开源数据分析处理库。
import matplotlib.pyplot as plt #常用Python画图工具
from sklearn.ensemble import GradientBoostingRegressor # 导入 GradientBoostingRegressor 模型
from sklearn.model_selection import train_test_split # 数据划分模块
from sklearn.preprocessing import StandardScaler # 标准化模块
from sklearn.metrics import mean_squared_error, r2_score #误差函数MSE,误差函数R^2,
from sklearn.model_selection import GridSearchCV #超参数网格搜索
2.2 导入数据
'''========================导入数据========================'''
data = pd.read_excel('D:/复现/trainset_loop6.xlsx') #读取xlsx格式数据
# date = pd.read_csv('D:/复现/trainset_loop6.csv') #读取csv格式数据
print(data.isnull().sum()) #检查数据中是否存在缺失值
print(data.shape) #检查维度
print(data.columns) #数据的标签
data = data.drop(["PN","AN"], axis = 1) #axis = 1表示对列进行处理,0表示对行
Y, X = data['Eads'] , data.drop(['Eads'] , axis = 1) #对Y、X分别赋值
2.3 标准化
'''=========================标准化========================'''
#利用StandardScaler函数对X进行标准化处理
scaler = StandardScaler()
X = scaler.fit_transform(X)
'''====================划分训练集与测试集==================='''
X_train,X_test,y_train,y_test = train_test_split(X , Y , test_size=0.2 , random_state=42)
2.4 模型训练
'''=======================模型训练========================'''
#模型训练
model = GradientBoosti
相关文章:

Gradient Boosting Regressor(GBDT)--- 论文实战
一、前言 在《机器学习论文复现实战---linear regression》中通过Pearson 相关性分析,去除了2个高相关性特征 "PN" 和 "AN" ,数据维度变为890*25。(数据集地址) 这里我们不做任何前期处理,直接就将数据放入 GBDT 模型中进行训练了。 二、模型训练过程…...

Python教程:python枚举类定义和使用
在Python中,枚举类(Enum)用于表示一组常量,使代码更加清晰和易于维护。枚举类通过enum模块定义。以下是如何定义和使用枚举类的详细步骤。 定义枚举类 首先,你需要导入enum模块,然后定义一个枚举类。枚举…...

Java学习Day60:微服务总结!(有经处无火,无火处无经)
1、技术版本 jdk:17及以上 -如果JDK8 springboot:3.1及其以上 -版本2.x springFramWork:6.0及其以上 -版本5.x springCloud:2022.0.5 -版本格林威治或者休斯顿 2、模拟springcloud 父模块指定父pom <parent><…...

MySQL日期类型选择建议
我们平时开发中不可避免的就是要存储时间,比如我们要记录操作表中这条记录的时间、记录转账的交易时间、记录出发时间、用户下单时间等等。你会发现时间这个东西与我们开发的联系还是非常紧密的,用的好与不好会给我们的业务甚至功能带来很大的影响。所以…...

70B的模型做微调,使用A10*8的卡能够使用
使用 8 张 A10 GPU(每张 A10 GPU 大约有 24 GB 的显存)来微调 70B 参数的模型会比较困难,主要原因是显存不足。像 70B 参数量级的模型(如 LLaMA-2 70B、BLOOM-176B)通常需要几百 GB 以上的显存,仅加载模型就…...

将vscode的终端改为cygwin terminal
现在终端是默认的power shell,没有显示cygwin 接下来选择默认配置文件 找到cygwin的选项即可 然后提示可能不安全什么的,点是,就有了...

《ASP.Net Core技术内幕与项目实战》读书笔记_1
ch1 .NET Core入门 .NET介绍 这一章主要说的是.Net Core、.Net Framework、.Net Stanard三个之间的关系。通俗来讲就是Core是新出的、能跨平台,Framwork是老版的、不能跨平台,Standard是为了在Framework、Core、Xamarin中统一库的使用而定制的规范&#…...

【青牛科技】应用方案|D2587A高压大电流DC-DC
1、概述 D2587A稳压器是专为反激式、升压和正向转换器应用而设计的单片集成电路。该器件提供四种不同的输出电压版本:3.3V、5V、12V 和可调节电压。这些稳压器需要的外部元器件很少,因此具有成本效益,并且易于使用。该电源开关是一款5A NPN器…...

【测试】【Debug】pytest运行后print没有输出
import pytest def test_good():for i in range(1000):print(i)def test_bad():print(this should fail!)assert False比如上述程序,运行之后只能看到输出了’this should fail!;但是debug版的测试运行后又能看到test_good函数中的输出。 这是为什么呢&a…...

linux strace 查看程序异常问题总结
1,死锁问题 #include <stdio.h> #include <pthread.h> #include <unistd.h>pthread_mutex_t lock1 PTHREAD_MUTEX_INITIALIZER; pthread_mutex_t lock2 PTHREAD_MUTEX_INITIALIZER;void* thread_func1(void* arg) {pthread_mutex_lock(&lo…...

8086汇编常见寄存器与指令
本文为学习书籍《汇编语言(第4版)》后的小结。 1、寄存器 序号寄存器描述1ax运算寄存器2bx地址寄存器,偏移地址3cx计数寄存器,loop的结束条件,jcxz的跳转条件4dx运算寄存器5cs段地址,指令执行段地址6ss段地址,栈的段地…...

Group By、Having用法总结(常见踩雷点总结—SQL)
Group By、Having用法总结 目录 Group By、Having用法总结一、 GROUP BY 用法二、 HAVING 用法三、 GROUP BY 和 HAVING 的常见踩雷点3.1 GROUP BY 选择的列必须出现在 SELECT 中(🤣最重要的一点)3.2 HAVING 与 WHERE 的区别3.3 GROUP BY 可以…...

Redis持久化机制——针对实习面试
目录 Redis持久化机制Redis为什么要有持久化机制?Redis持久化方式有哪些?AOF持久化工作原理是什么?有什么优缺点?AOF持久化工作原理AOF的优点AOF的缺点 RDB持久化工作原理是什么?有什么优缺点?RDB持久化工作…...

Windows系统服务器怎么设置远程连接?详细步骤
一、什么是Windows远程桌面连接? Windows远程桌面(Remote Desktop)功能使用户能够通过网络连接到另一台Windows计算机,实现远程操作。远程桌面非常适合系统管理员、技术支持人员以及那些需要远程工作的人,它允许用户以图形界面的方式访问远程计算机&…...

【Rust设计模式之建造者模式】
Rust设计模式之建造者模式 什么是建造者模式 什么是建造者模式 即将结构体属性方法与构建解离,使用专门的builder进行建造,说白了就是new和其他的方法分开,集中处理更方便。 直接上代码: #[derive(Debug)] struct children {nam…...

2024中国移动(南京)智算大会暨人工智能产业大会即将盛大启幕
11月9日,2024中国移动(南京)智算大会暨人工智能产业大会将在南京国际博览中心盛大举行。此次盛会将汇聚政界、学界与商界的顶尖力量,共同探讨智能计算与人工智能的未来发展方向,为智能计算与人工智能产业的发展注入新的…...

计算机毕业设计 | SpringBoot咖啡商城 购物采买平台 后台管理软件(附源码)
1,项目背景 1.1 当前的问题和困惑 系统稳定性: 在高并发访问时,商城系统容易出现卡顿、崩溃等问题,影响了用户体验和销售额。支付安全性: 支付环节存在潜在的安全隐患,如何确保支付过程的安全性和用户资金…...

CosyVoice文本转语音:轻松创造个性化音频
CosyVoice文本转语音:轻松创造个性化音频" 要实现一个使用通义语音合成模型CosyVoice将文字转换为音频的图形界面应用,可以使用Python的tkinter库来创建图形用户界面(GUI),并使用requests库来调用CosyVoice的API…...

法语nous sommes
法语短语 “nous sommes” 的词源可以追溯到拉丁语,具体分析如下: 1. “Nous” 的词源: “Nous” 是法语中表示 “我们” 的人称代词,源自拉丁语的 “nos”,它表示 “我们” 的意思。 拉丁语 “nos” 是第一人称复数…...

《化学进展》
《化学进展》主要栏目有:综述,评论,中国化学印记,Mini Accounts等。本刊可供化学及相关学科领域的科研、教学、决策管理人员及研究生阅读。 《化学进展》投稿指南稿件要求 (1)本刊仅接受综述与评论性的…...

CNN和RCNN的关系和区别
RCNN(Region-based Convolutional Neural Network)和 CNN(Convolutional Neural Network)是两种不同的神经网络架构,它们在应用和结构上有所不同。以下是它们之间的主要区别: 1. 基本概念 CNN(…...

Chromium 进程降权和提权模拟示例c++
一、背景知识概念参考微软链接: 强制完整性控制 - Win32 应用程序 |Microsoft 学习 授权) (模拟级别 - Win32 apps | Microsoft Learn DuplicateTokenEx 函数 (securitybaseapi.h) - Win32 apps | Microsoft Learn 本文主要演示 low, medium, high, and system 四…...

【测试语言篇一】Python进阶篇:内置容器数据类型
一、列表 列表(List)是一种有序且可变的容器数据类型。 与集合(Set)不同,列表允许重复的元素。 它方便保存数据序列并对其进行进一步迭代。 列表用方括号创建。 my_list ["banana", "cherry", …...

湘潭大学软件工程专业选修 SOA 期末考试复习(二)
文章目录 回顾序言第一章课后题填空选择简答 第二章课后题填空选择编程 计划第三章课后题填空选择简答编程 第四章课后题填空选择简答编程 第五章课后题填空选择简答编程 第六章课后题说明 第七章课后题填空选择简答编程 第八章课后题填空选择简答编程 第九章课后题填空选择简答…...

改进的正弦余弦算法复现
本文所涉及所有资源均在 传知代码平台 可获取。 目录 一、背景及意义 (一)背包问题背景...

Day13杨辉三角
给定一个非负整数 numRows,生成「杨辉三角」的前 numRows 行。 在「杨辉三角」中,每个数是它左上方和右上方的数的和。 class Solution {public List<List<Integer>> generate(int numRows) {List<List<Integer>> res new Arra…...

【c知道】Hadoop工作原理。
请解释一下Hadoop中MapReduce的工作原理,并说明如何进行MapReduce程序的编写和调试。 Hadoop MapReduce是一种分布式计算模型,它将大规模的数据处理任务分解成一系列小的、独立的任务(Map任务)和后续的聚合任务(Reduce…...

React.lazy() 懒加载
概要 React.lazy() 是 React 16.6 引入的一个功能,用于实现代码分割(code splitting)。它允许你懒加载组件,即在需要时才加载组件,而不是在应用初始加载时就加载所有组件。这种方法可以显著提高应用的性能,…...

【自学笔记】神经网络(1)
文章目录 介绍模型结构层(Layer)神经元 前向传播反向传播Q1: 为什么要用向量Q2: 不用激活函数会发生什么 介绍 我们已经学习了简单的分类任务和回归任务,也认识了逻辑回归和正则化等技巧,已经可以搭建一个简单的神经网络模型了。 …...

c#————扩展方法
关键点: 定义扩展方法的类和方法必须是静态的: 扩展方法必须在一个静态类中定义。扩展方法本身也必须是静态的。第一个参数使用 this 关键字: 扩展方法的第一个参数指定要扩展的类型,并且在这个参数前加上 this 关键字。这个参数…...