当前位置: 首页 > news >正文

70B的模型做微调,使用A10*8的卡能够使用

使用 8 张 A10 GPU(每张 A10 GPU 大约有 24 GB 的显存)来微调 70B 参数的模型会比较困难,主要原因是显存不足。像 70B 参数量级的模型(如 LLaMA-2 70B、BLOOM-176B)通常需要几百 GB 以上的显存,仅加载模型就需要大约 280-300 GB 的显存,因此即使 8 张 A10 显卡合计约 192 GB 显存,仍然难以直接加载和微调 70B 的模型。

不过,可以尝试以下几种方法来减少显存占用,从而使微调有可能实现:

1. LoRA(Low-Rank Adaptation)微调

  • 方法:LoRA 是一种参数高效微调方法,通过只训练一部分参数而不更新所有权重,大大减少了显存需求。
  • 实现步骤
    • 使用 Hugging Face Transformers 或 PEFT(Parameter-Efficient Fine-Tuning)库加载基础模型。
    • 使用 LoRA 层覆盖模型的部分参数层,并只微调这些层。
  • 优点:显著减少显存使用,通常可以在大约 24GB 的显存上进行 70B 的 LoRA 微调。
  • 缺点:微调后模型会依赖 LoRA 层,推理时需要加载这些额外参数。

2. 分布式训练(Tensor Parallelism & Model Parallelism)

  • 方法:将模型的不同部分切分到不同的 GPU 上,通过张量并行或模型并行的方法将显存负载分散到多张 GPU 上。
  • 工具:使用 DeepSpeed(ZeRO Redundancy Optimizer 模式)、Megatron-LM 或 Colossal-AI 等工具,这些工具可以自动进行模型分割和内存管理。
  • 优点:充分利用多个 GPU 的显存和计算资源。
  • 缺点:配置较为复杂,且仍需充足的显存,并可能对带宽有较高要求。

3. FP16 或 INT8 量化

  • 方法:将模型的参数量化为半精度(FP16)甚至 INT8,可以大幅减少显存需求。
  • 工具:Hugging Face Accelerate 或 BitsAndBytes 库提供了 8-bit 量化支持。
  • 优点:能大幅降低显存需求,虽然 70B 的模型仍然较大,但可能可以加载到 8 张 A10 GPU 中。
  • 缺点:量化可能导致精度损失,尤其是对生成任务的影响较大。

4. 微调小型衍生模型

  • 如果使用 70B 模型只用于特定任务,可能不需要微调整个模型。可以尝试仅微调小型衍生模型,例如 Distil 模型或剪枝模型,将 70B 的模型通过蒸馏、剪枝等方法缩小至 13B 或 30B,再进行微调。

5. 梯度检查点(Gradient Checkpointing)

  • 方法:通过在反向传播时逐步计算梯度,而非一次性存储所有层的激活值,降低显存使用。
  • 优点:能显著降低显存峰值需求,尤其适合深层网络。
  • 缺点:增加训练时间,因为每次反向传播都要重新计算激活。

适用建议

对 70B 参数量级的模型,在 8 张 A10 GPU 上微调建议使用 LoRA量化,可以先将模型转换到 FP16 或 INT8 格式,再通过 LoRA 微调一部分关键参数。这种方法相对更可行,且显存占用较小。

相关文章:

70B的模型做微调,使用A10*8的卡能够使用

使用 8 张 A10 GPU(每张 A10 GPU 大约有 24 GB 的显存)来微调 70B 参数的模型会比较困难,主要原因是显存不足。像 70B 参数量级的模型(如 LLaMA-2 70B、BLOOM-176B)通常需要几百 GB 以上的显存,仅加载模型就…...

将vscode的终端改为cygwin terminal

现在终端是默认的power shell,没有显示cygwin 接下来选择默认配置文件 找到cygwin的选项即可 然后提示可能不安全什么的,点是,就有了...

《ASP.Net Core技术内幕与项目实战》读书笔记_1

ch1 .NET Core入门 .NET介绍 这一章主要说的是.Net Core、.Net Framework、.Net Stanard三个之间的关系。通俗来讲就是Core是新出的、能跨平台,Framwork是老版的、不能跨平台,Standard是为了在Framework、Core、Xamarin中统一库的使用而定制的规范&#…...

【青牛科技】应用方案|D2587A高压大电流DC-DC

1、概述 D2587A稳压器是专为反激式、升压和正向转换器应用而设计的单片集成电路。该器件提供四种不同的输出电压版本:3.3V、5V、12V 和可调节电压。这些稳压器需要的外部元器件很少,因此具有成本效益,并且易于使用。该电源开关是一款5A NPN器…...

【测试】【Debug】pytest运行后print没有输出

import pytest def test_good():for i in range(1000):print(i)def test_bad():print(this should fail!)assert False比如上述程序,运行之后只能看到输出了’this should fail!;但是debug版的测试运行后又能看到test_good函数中的输出。 这是为什么呢&a…...

linux strace 查看程序异常问题总结

1&#xff0c;死锁问题 #include <stdio.h> #include <pthread.h> #include <unistd.h>pthread_mutex_t lock1 PTHREAD_MUTEX_INITIALIZER; pthread_mutex_t lock2 PTHREAD_MUTEX_INITIALIZER;void* thread_func1(void* arg) {pthread_mutex_lock(&lo…...

8086汇编常见寄存器与指令

本文为学习书籍《汇编语言(第4版)》后的小结。 1、寄存器 序号寄存器描述1ax运算寄存器2bx地址寄存器&#xff0c;偏移地址3cx计数寄存器&#xff0c;loop的结束条件&#xff0c;jcxz的跳转条件4dx运算寄存器5cs段地址&#xff0c;指令执行段地址6ss段地址&#xff0c;栈的段地…...

Group By、Having用法总结(常见踩雷点总结—SQL)

Group By、Having用法总结 目录 Group By、Having用法总结一、 GROUP BY 用法二、 HAVING 用法三、 GROUP BY 和 HAVING 的常见踩雷点3.1 GROUP BY 选择的列必须出现在 SELECT 中&#xff08;&#x1f923;最重要的一点&#xff09;3.2 HAVING 与 WHERE 的区别3.3 GROUP BY 可以…...

Redis持久化机制——针对实习面试

目录 Redis持久化机制Redis为什么要有持久化机制&#xff1f;Redis持久化方式有哪些&#xff1f;AOF持久化工作原理是什么&#xff1f;有什么优缺点&#xff1f;AOF持久化工作原理AOF的优点AOF的缺点 RDB持久化工作原理是什么&#xff1f;有什么优缺点&#xff1f;RDB持久化工作…...

Windows系统服务器怎么设置远程连接?详细步骤

一、什么是Windows远程桌面连接? Windows远程桌面(Remote Desktop)功能使用户能够通过网络连接到另一台Windows计算机&#xff0c;实现远程操作。远程桌面非常适合系统管理员、技术支持人员以及那些需要远程工作的人&#xff0c;它允许用户以图形界面的方式访问远程计算机&…...

【Rust设计模式之建造者模式】

Rust设计模式之建造者模式 什么是建造者模式 什么是建造者模式 即将结构体属性方法与构建解离&#xff0c;使用专门的builder进行建造&#xff0c;说白了就是new和其他的方法分开&#xff0c;集中处理更方便。 直接上代码&#xff1a; #[derive(Debug)] struct children {nam…...

2024中国移动(南京)智算大会暨人工智能产业大会即将盛大启幕

11月9日&#xff0c;2024中国移动&#xff08;南京&#xff09;智算大会暨人工智能产业大会将在南京国际博览中心盛大举行。此次盛会将汇聚政界、学界与商界的顶尖力量&#xff0c;共同探讨智能计算与人工智能的未来发展方向&#xff0c;为智能计算与人工智能产业的发展注入新的…...

计算机毕业设计 | SpringBoot咖啡商城 购物采买平台 后台管理软件(附源码)

1&#xff0c;项目背景 1.1 当前的问题和困惑 系统稳定性&#xff1a; 在高并发访问时&#xff0c;商城系统容易出现卡顿、崩溃等问题&#xff0c;影响了用户体验和销售额。支付安全性&#xff1a; 支付环节存在潜在的安全隐患&#xff0c;如何确保支付过程的安全性和用户资金…...

CosyVoice文本转语音:轻松创造个性化音频

CosyVoice文本转语音&#xff1a;轻松创造个性化音频" 要实现一个使用通义语音合成模型CosyVoice将文字转换为音频的图形界面应用&#xff0c;可以使用Python的tkinter库来创建图形用户界面&#xff08;GUI&#xff09;&#xff0c;并使用requests库来调用CosyVoice的API…...

法语nous sommes

法语短语 “nous sommes” 的词源可以追溯到拉丁语&#xff0c;具体分析如下&#xff1a; 1. “Nous” 的词源&#xff1a; “Nous” 是法语中表示 “我们” 的人称代词&#xff0c;源自拉丁语的 “nos”&#xff0c;它表示 “我们” 的意思。 拉丁语 “nos” 是第一人称复数…...

《化学进展》

《化学进展》主要栏目有&#xff1a;综述&#xff0c;评论&#xff0c;中国化学印记&#xff0c;Mini Accounts等。本刊可供化学及相关学科领域的科研、教学、决策管理人员及研究生阅读。 《化学进展》投稿指南稿件要求   &#xff08;1&#xff09;本刊仅接受综述与评论性的…...

CNN和RCNN的关系和区别

RCNN&#xff08;Region-based Convolutional Neural Network&#xff09;和 CNN&#xff08;Convolutional Neural Network&#xff09;是两种不同的神经网络架构&#xff0c;它们在应用和结构上有所不同。以下是它们之间的主要区别&#xff1a; 1. 基本概念 CNN&#xff08;…...

Chromium 进程降权和提权模拟示例c++

一、背景知识概念参考微软链接&#xff1a; 强制完整性控制 - Win32 应用程序 |Microsoft 学习 授权) (模拟级别 - Win32 apps | Microsoft Learn DuplicateTokenEx 函数 (securitybaseapi.h) - Win32 apps | Microsoft Learn 本文主要演示 low, medium, high, and system 四…...

【测试语言篇一】Python进阶篇:内置容器数据类型

一、列表 列表&#xff08;List&#xff09;是一种有序且可变的容器数据类型。 与集合&#xff08;Set&#xff09;不同&#xff0c;列表允许重复的元素。 它方便保存数据序列并对其进行进一步迭代。 列表用方括号创建。 my_list ["banana", "cherry", …...

湘潭大学软件工程专业选修 SOA 期末考试复习(二)

文章目录 回顾序言第一章课后题填空选择简答 第二章课后题填空选择编程 计划第三章课后题填空选择简答编程 第四章课后题填空选择简答编程 第五章课后题填空选择简答编程 第六章课后题说明 第七章课后题填空选择简答编程 第八章课后题填空选择简答编程 第九章课后题填空选择简答…...

改进的正弦余弦算法复现

本文所涉及所有资源均在 传知代码平台 可获取。 目录 一、背景及意义 (一)背包问题背景...

Day13杨辉三角

给定一个非负整数 numRows&#xff0c;生成「杨辉三角」的前 numRows 行。 在「杨辉三角」中&#xff0c;每个数是它左上方和右上方的数的和。 class Solution {public List<List<Integer>> generate(int numRows) {List<List<Integer>> res new Arra…...

【c知道】Hadoop工作原理。

请解释一下Hadoop中MapReduce的工作原理&#xff0c;并说明如何进行MapReduce程序的编写和调试。 Hadoop MapReduce是一种分布式计算模型&#xff0c;它将大规模的数据处理任务分解成一系列小的、独立的任务&#xff08;Map任务&#xff09;和后续的聚合任务&#xff08;Reduce…...

React.lazy() 懒加载

概要 React.lazy() 是 React 16.6 引入的一个功能&#xff0c;用于实现代码分割&#xff08;code splitting&#xff09;。它允许你懒加载组件&#xff0c;即在需要时才加载组件&#xff0c;而不是在应用初始加载时就加载所有组件。这种方法可以显著提高应用的性能&#xff0c…...

【自学笔记】神经网络(1)

文章目录 介绍模型结构层&#xff08;Layer&#xff09;神经元 前向传播反向传播Q1: 为什么要用向量Q2: 不用激活函数会发生什么 介绍 我们已经学习了简单的分类任务和回归任务&#xff0c;也认识了逻辑回归和正则化等技巧&#xff0c;已经可以搭建一个简单的神经网络模型了。 …...

c#————扩展方法

关键点&#xff1a; 定义扩展方法的类和方法必须是静态的&#xff1a; 扩展方法必须在一个静态类中定义。扩展方法本身也必须是静态的。第一个参数使用 this 关键字&#xff1a; 扩展方法的第一个参数指定要扩展的类型&#xff0c;并且在这个参数前加上 this 关键字。这个参数…...

前向-后向卡尔曼滤波器(Forward-Backward Kalman Filter)资料汇总

《卡尔曼滤波引出的RTS平滑》参考位置2《卡尔曼滤波系列——&#xff08;六&#xff09;卡尔曼平滑》《关于卡尔曼滤波和卡尔曼平滑关系的理解》——有m语言例程《Forward Backwards Kalman Filter》——Matlab软件《卡尔曼滤波与隐马尔可夫模型》...

云集电商:如何通过 OceanBase 实现降本 87.5%|OceanBase案例

云集电商&#xff0c;一家聚焦于社交电商的电商公司&#xff0c;专注于‘精选’理念&#xff0c;致力于为会员提供超高性价比的全品类精选商品&#xff0c;以“批发价”让亿万消费者买到质量可靠的商品。面对近年来外部环境的变化&#xff0c;公司对成本控制提出了更高要求&…...

详解Rust标准库:BTreeMap

std::collections::BTreeMap定义 B树也称B-树&#xff0c;注意不是减号&#xff0c;是一棵多路平衡查找树&#xff1b;理论上&#xff0c;二叉搜索树 &#xff08;BST&#xff09; 是最佳的选择排序映射&#xff0c;但是每次查找时层数越多I/O次数越多&#xff0c;B 树使每个节…...

.NET WPF CommunityToolkit.Mvvm框架

文章目录 .NET WPF CommunityToolkit.Mvvm框架1 源生成器1.1 ObservablePropertyAttribute & RelayCommandAttribute1.2 INotifyPropertyChangedAttribute 2 可观测对象2.1 ObservableValidator2.2 ObservableRecipient .NET WPF CommunityToolkit.Mvvm框架 1 源生成器 1…...