当前位置: 首页 > news >正文

70B的模型做微调,使用A10*8的卡能够使用

使用 8 张 A10 GPU(每张 A10 GPU 大约有 24 GB 的显存)来微调 70B 参数的模型会比较困难,主要原因是显存不足。像 70B 参数量级的模型(如 LLaMA-2 70B、BLOOM-176B)通常需要几百 GB 以上的显存,仅加载模型就需要大约 280-300 GB 的显存,因此即使 8 张 A10 显卡合计约 192 GB 显存,仍然难以直接加载和微调 70B 的模型。

不过,可以尝试以下几种方法来减少显存占用,从而使微调有可能实现:

1. LoRA(Low-Rank Adaptation)微调

  • 方法:LoRA 是一种参数高效微调方法,通过只训练一部分参数而不更新所有权重,大大减少了显存需求。
  • 实现步骤
    • 使用 Hugging Face Transformers 或 PEFT(Parameter-Efficient Fine-Tuning)库加载基础模型。
    • 使用 LoRA 层覆盖模型的部分参数层,并只微调这些层。
  • 优点:显著减少显存使用,通常可以在大约 24GB 的显存上进行 70B 的 LoRA 微调。
  • 缺点:微调后模型会依赖 LoRA 层,推理时需要加载这些额外参数。

2. 分布式训练(Tensor Parallelism & Model Parallelism)

  • 方法:将模型的不同部分切分到不同的 GPU 上,通过张量并行或模型并行的方法将显存负载分散到多张 GPU 上。
  • 工具:使用 DeepSpeed(ZeRO Redundancy Optimizer 模式)、Megatron-LM 或 Colossal-AI 等工具,这些工具可以自动进行模型分割和内存管理。
  • 优点:充分利用多个 GPU 的显存和计算资源。
  • 缺点:配置较为复杂,且仍需充足的显存,并可能对带宽有较高要求。

3. FP16 或 INT8 量化

  • 方法:将模型的参数量化为半精度(FP16)甚至 INT8,可以大幅减少显存需求。
  • 工具:Hugging Face Accelerate 或 BitsAndBytes 库提供了 8-bit 量化支持。
  • 优点:能大幅降低显存需求,虽然 70B 的模型仍然较大,但可能可以加载到 8 张 A10 GPU 中。
  • 缺点:量化可能导致精度损失,尤其是对生成任务的影响较大。

4. 微调小型衍生模型

  • 如果使用 70B 模型只用于特定任务,可能不需要微调整个模型。可以尝试仅微调小型衍生模型,例如 Distil 模型或剪枝模型,将 70B 的模型通过蒸馏、剪枝等方法缩小至 13B 或 30B,再进行微调。

5. 梯度检查点(Gradient Checkpointing)

  • 方法:通过在反向传播时逐步计算梯度,而非一次性存储所有层的激活值,降低显存使用。
  • 优点:能显著降低显存峰值需求,尤其适合深层网络。
  • 缺点:增加训练时间,因为每次反向传播都要重新计算激活。

适用建议

对 70B 参数量级的模型,在 8 张 A10 GPU 上微调建议使用 LoRA量化,可以先将模型转换到 FP16 或 INT8 格式,再通过 LoRA 微调一部分关键参数。这种方法相对更可行,且显存占用较小。

相关文章:

70B的模型做微调,使用A10*8的卡能够使用

使用 8 张 A10 GPU(每张 A10 GPU 大约有 24 GB 的显存)来微调 70B 参数的模型会比较困难,主要原因是显存不足。像 70B 参数量级的模型(如 LLaMA-2 70B、BLOOM-176B)通常需要几百 GB 以上的显存,仅加载模型就…...

将vscode的终端改为cygwin terminal

现在终端是默认的power shell,没有显示cygwin 接下来选择默认配置文件 找到cygwin的选项即可 然后提示可能不安全什么的,点是,就有了...

《ASP.Net Core技术内幕与项目实战》读书笔记_1

ch1 .NET Core入门 .NET介绍 这一章主要说的是.Net Core、.Net Framework、.Net Stanard三个之间的关系。通俗来讲就是Core是新出的、能跨平台,Framwork是老版的、不能跨平台,Standard是为了在Framework、Core、Xamarin中统一库的使用而定制的规范&#…...

【青牛科技】应用方案|D2587A高压大电流DC-DC

1、概述 D2587A稳压器是专为反激式、升压和正向转换器应用而设计的单片集成电路。该器件提供四种不同的输出电压版本:3.3V、5V、12V 和可调节电压。这些稳压器需要的外部元器件很少,因此具有成本效益,并且易于使用。该电源开关是一款5A NPN器…...

【测试】【Debug】pytest运行后print没有输出

import pytest def test_good():for i in range(1000):print(i)def test_bad():print(this should fail!)assert False比如上述程序,运行之后只能看到输出了’this should fail!;但是debug版的测试运行后又能看到test_good函数中的输出。 这是为什么呢&a…...

linux strace 查看程序异常问题总结

1&#xff0c;死锁问题 #include <stdio.h> #include <pthread.h> #include <unistd.h>pthread_mutex_t lock1 PTHREAD_MUTEX_INITIALIZER; pthread_mutex_t lock2 PTHREAD_MUTEX_INITIALIZER;void* thread_func1(void* arg) {pthread_mutex_lock(&lo…...

8086汇编常见寄存器与指令

本文为学习书籍《汇编语言(第4版)》后的小结。 1、寄存器 序号寄存器描述1ax运算寄存器2bx地址寄存器&#xff0c;偏移地址3cx计数寄存器&#xff0c;loop的结束条件&#xff0c;jcxz的跳转条件4dx运算寄存器5cs段地址&#xff0c;指令执行段地址6ss段地址&#xff0c;栈的段地…...

Group By、Having用法总结(常见踩雷点总结—SQL)

Group By、Having用法总结 目录 Group By、Having用法总结一、 GROUP BY 用法二、 HAVING 用法三、 GROUP BY 和 HAVING 的常见踩雷点3.1 GROUP BY 选择的列必须出现在 SELECT 中&#xff08;&#x1f923;最重要的一点&#xff09;3.2 HAVING 与 WHERE 的区别3.3 GROUP BY 可以…...

Redis持久化机制——针对实习面试

目录 Redis持久化机制Redis为什么要有持久化机制&#xff1f;Redis持久化方式有哪些&#xff1f;AOF持久化工作原理是什么&#xff1f;有什么优缺点&#xff1f;AOF持久化工作原理AOF的优点AOF的缺点 RDB持久化工作原理是什么&#xff1f;有什么优缺点&#xff1f;RDB持久化工作…...

Windows系统服务器怎么设置远程连接?详细步骤

一、什么是Windows远程桌面连接? Windows远程桌面(Remote Desktop)功能使用户能够通过网络连接到另一台Windows计算机&#xff0c;实现远程操作。远程桌面非常适合系统管理员、技术支持人员以及那些需要远程工作的人&#xff0c;它允许用户以图形界面的方式访问远程计算机&…...

【Rust设计模式之建造者模式】

Rust设计模式之建造者模式 什么是建造者模式 什么是建造者模式 即将结构体属性方法与构建解离&#xff0c;使用专门的builder进行建造&#xff0c;说白了就是new和其他的方法分开&#xff0c;集中处理更方便。 直接上代码&#xff1a; #[derive(Debug)] struct children {nam…...

2024中国移动(南京)智算大会暨人工智能产业大会即将盛大启幕

11月9日&#xff0c;2024中国移动&#xff08;南京&#xff09;智算大会暨人工智能产业大会将在南京国际博览中心盛大举行。此次盛会将汇聚政界、学界与商界的顶尖力量&#xff0c;共同探讨智能计算与人工智能的未来发展方向&#xff0c;为智能计算与人工智能产业的发展注入新的…...

计算机毕业设计 | SpringBoot咖啡商城 购物采买平台 后台管理软件(附源码)

1&#xff0c;项目背景 1.1 当前的问题和困惑 系统稳定性&#xff1a; 在高并发访问时&#xff0c;商城系统容易出现卡顿、崩溃等问题&#xff0c;影响了用户体验和销售额。支付安全性&#xff1a; 支付环节存在潜在的安全隐患&#xff0c;如何确保支付过程的安全性和用户资金…...

CosyVoice文本转语音:轻松创造个性化音频

CosyVoice文本转语音&#xff1a;轻松创造个性化音频" 要实现一个使用通义语音合成模型CosyVoice将文字转换为音频的图形界面应用&#xff0c;可以使用Python的tkinter库来创建图形用户界面&#xff08;GUI&#xff09;&#xff0c;并使用requests库来调用CosyVoice的API…...

法语nous sommes

法语短语 “nous sommes” 的词源可以追溯到拉丁语&#xff0c;具体分析如下&#xff1a; 1. “Nous” 的词源&#xff1a; “Nous” 是法语中表示 “我们” 的人称代词&#xff0c;源自拉丁语的 “nos”&#xff0c;它表示 “我们” 的意思。 拉丁语 “nos” 是第一人称复数…...

《化学进展》

《化学进展》主要栏目有&#xff1a;综述&#xff0c;评论&#xff0c;中国化学印记&#xff0c;Mini Accounts等。本刊可供化学及相关学科领域的科研、教学、决策管理人员及研究生阅读。 《化学进展》投稿指南稿件要求   &#xff08;1&#xff09;本刊仅接受综述与评论性的…...

CNN和RCNN的关系和区别

RCNN&#xff08;Region-based Convolutional Neural Network&#xff09;和 CNN&#xff08;Convolutional Neural Network&#xff09;是两种不同的神经网络架构&#xff0c;它们在应用和结构上有所不同。以下是它们之间的主要区别&#xff1a; 1. 基本概念 CNN&#xff08;…...

Chromium 进程降权和提权模拟示例c++

一、背景知识概念参考微软链接&#xff1a; 强制完整性控制 - Win32 应用程序 |Microsoft 学习 授权) (模拟级别 - Win32 apps | Microsoft Learn DuplicateTokenEx 函数 (securitybaseapi.h) - Win32 apps | Microsoft Learn 本文主要演示 low, medium, high, and system 四…...

【测试语言篇一】Python进阶篇:内置容器数据类型

一、列表 列表&#xff08;List&#xff09;是一种有序且可变的容器数据类型。 与集合&#xff08;Set&#xff09;不同&#xff0c;列表允许重复的元素。 它方便保存数据序列并对其进行进一步迭代。 列表用方括号创建。 my_list ["banana", "cherry", …...

湘潭大学软件工程专业选修 SOA 期末考试复习(二)

文章目录 回顾序言第一章课后题填空选择简答 第二章课后题填空选择编程 计划第三章课后题填空选择简答编程 第四章课后题填空选择简答编程 第五章课后题填空选择简答编程 第六章课后题说明 第七章课后题填空选择简答编程 第八章课后题填空选择简答编程 第九章课后题填空选择简答…...

wordpress后台更新后 前端没变化的解决方法

使用siteground主机的wordpress网站&#xff0c;会出现更新了网站内容和修改了php模板文件、js文件、css文件、图片文件后&#xff0c;网站没有变化的情况。 不熟悉siteground主机的新手&#xff0c;遇到这个问题&#xff0c;就很抓狂&#xff0c;明明是哪都没操作错误&#x…...

突破不可导策略的训练难题:零阶优化与强化学习的深度嵌合

强化学习&#xff08;Reinforcement Learning, RL&#xff09;是工业领域智能控制的重要方法。它的基本原理是将最优控制问题建模为马尔可夫决策过程&#xff0c;然后使用强化学习的Actor-Critic机制&#xff08;中文译作“知行互动”机制&#xff09;&#xff0c;逐步迭代求解…...

FFmpeg 低延迟同屏方案

引言 在实时互动需求激增的当下&#xff0c;无论是在线教育中的师生同屏演示、远程办公的屏幕共享协作&#xff0c;还是游戏直播的画面实时传输&#xff0c;低延迟同屏已成为保障用户体验的核心指标。FFmpeg 作为一款功能强大的多媒体框架&#xff0c;凭借其灵活的编解码、数据…...

通过Wrangler CLI在worker中创建数据库和表

官方使用文档&#xff1a;Getting started Cloudflare D1 docs 创建数据库 在命令行中执行完成之后&#xff0c;会在本地和远程创建数据库&#xff1a; npx wranglerlatest d1 create prod-d1-tutorial 在cf中就可以看到数据库&#xff1a; 现在&#xff0c;您的Cloudfla…...

解决本地部署 SmolVLM2 大语言模型运行 flash-attn 报错

出现的问题 安装 flash-attn 会一直卡在 build 那一步或者运行报错 解决办法 是因为你安装的 flash-attn 版本没有对应上&#xff0c;所以报错&#xff0c;到 https://github.com/Dao-AILab/flash-attention/releases 下载对应版本&#xff0c;cu、torch、cp 的版本一定要对…...

云原生玩法三问:构建自定义开发环境

云原生玩法三问&#xff1a;构建自定义开发环境 引言 临时运维一个古董项目&#xff0c;无文档&#xff0c;无环境&#xff0c;无交接人&#xff0c;俗称三无。 运行设备的环境老&#xff0c;本地环境版本高&#xff0c;ssh不过去。正好最近对 腾讯出品的云原生 cnb 感兴趣&…...

LLMs 系列实操科普(1)

写在前面&#xff1a; 本期内容我们继续 Andrej Karpathy 的《How I use LLMs》讲座内容&#xff0c;原视频时长 ~130 分钟&#xff0c;以实操演示主流的一些 LLMs 的使用&#xff0c;由于涉及到实操&#xff0c;实际上并不适合以文字整理&#xff0c;但还是决定尽量整理一份笔…...

uniapp手机号一键登录保姆级教程(包含前端和后端)

目录 前置条件创建uniapp项目并关联uniClound云空间开启一键登录模块并开通一键登录服务编写云函数并上传部署获取手机号流程(第一种) 前端直接调用云函数获取手机号&#xff08;第三种&#xff09;后台调用云函数获取手机号 错误码常见问题 前置条件 手机安装有sim卡手机开启…...

HTML前端开发:JavaScript 获取元素方法详解

作为前端开发者&#xff0c;高效获取 DOM 元素是必备技能。以下是 JS 中核心的获取元素方法&#xff0c;分为两大系列&#xff1a; 一、getElementBy... 系列 传统方法&#xff0c;直接通过 DOM 接口访问&#xff0c;返回动态集合&#xff08;元素变化会实时更新&#xff09;。…...

C++--string的模拟实现

一,引言 string的模拟实现是只对string对象中给的主要功能经行模拟实现&#xff0c;其目的是加强对string的底层了解&#xff0c;以便于在以后的学习或者工作中更加熟练的使用string。本文中的代码仅供参考并不唯一。 二,默认成员函数 string主要有三个成员变量&#xff0c;…...